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P R E FAC E

THE GREAT COMPOSE R  Igor Stravinsky once said, “ Musical 
form is close to mathematics—not perhaps to  mathe matics 
itself, but certainly to something like mathematical 
thinking and relationships.” Indeed, numerous writers 
have commented on the supposed affinity between math-
ematics and music, citing the fact that many scientists 
enjoy listening to music or actually practice it; Albert 
Einstein and his iconic violin immediately come to mind, 
but there were many, many others.

This may be true, but the relations between the two 
disciplines were never truly symmetric. Yes, there are 
many similarities between the two. For example, math-
ematics and music both depend on an efficient system of 
notation—a set of written symbols that convey a precise, 
unambiguous meaning to its practitioners (although in 
music this is augmented by a large assortment of verbal 
terms to indicate the more emotional aspects of playing). 
It is also interesting to note that the two systems started 
to evolve roughly around the same time, beginning about 
1000 CE, although in mathematics this system of nota-
tion continues to evolve even today as new branches of the 
discipline come into being.

Mathematics and music also share many terms. Take, 
for example, the word harmonic. As an adjective it means 
“pleasing to the ear”; as a noun, it refers to the series of 
higher overtones that accompany the sound of practically 
all musical instruments. Now this word is almost as com-
mon in mathematics as it is in music; the two- volume En-
cyclopedic Dictionary of Mathematics lists no fewer than 
twenty usages of the word, including harmonic mean, 
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harmonic series, harmonic analysis, and harmonic func-
tions. Other examples of common terms are inversion (of 
a musical interval; of a point with respect to a circle), root 
(of a musical chord; of a number or an equation), progres-
sion (of notes; of numbers), and series (in music, Arnold 
Schoenberg’s twelve- tone system of composition; in math-
ematics, an infinite sum of terms). 

Over the past twenty- five hundred years, music has 
been a great source of inspiration to mathematicians, who 
found in it a perennial source of outstanding problems to 
keep their minds busy. Perhaps the most famous of these 
is the problem of the vibrating string, a subject that pit-
ted against each other some of the greatest mathemati-
cians of the eighteenth century in a debate that lasted 
well over fifty years and that would ultimately lead to the 
development of post- calculus mathematics. The arithme-
tic, geometric, and harmonic means A a b

2= + , G ab= ,  
and H a b

ab2= +  of two positive numbers a and b most likely 
originated with the ratios 2:1, 3:2, and 4:3 of the octave, 
fifth, and fourth—the Pythagorean perfect consonances—
as the adjective “harmonic” alludes to. And the branch of 
number theory dealing with continued fractions may have 
had its origin in the quest to find the best numerical ratios 
for the various musical intervals of the scale.

But did mathematics have a similar influence on music? 
Mathematics has, of course, much to say about the more 
technical aspects of music, such as the tuning of musi-
cal instruments or the design of acoustically satisfying 
concert halls. But as to its influence on music as an art, 
it was, with a few notable exceptions, rather limited; the 
two disciplines simply followed their own separate ways. 
Typical of the disconnect is Leonhard Euler’s extensive 
treatise on music theory (see chapter 4), of which it was 
said that “it contained too much geometry for musicians, 
and too much music for geometers.” 
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𝄓
I grew up in a home that loved European culture—litera-
ture, art, and music. Neither of my parents was musically 
trained, but my mother, who was an artist, admired Mo-
zart; the radio was always tuned to the classical music 
station while she was at her desk, painting beautiful flow-
ers. So Mozart was part of my childhood, both his music 
and the many stories my mother told me about him. One 
day she took me to a movie about Mozart’s life. That was 
decades before Peter Shaffer’s fictional Amadeus made 
the headlines. I remember crying at the scene of Mozart’s 
final hours, lying on his deathbed while dictating the 
notes of his unfinished Requiem to his student Süssmayr. 

But it was my maternal grandfather who instilled in 
me a lifelong interest in both science and music. He and 
my grandmother left Germany for Israel (then Palestine) 
in 1938 when life for Jews under the Nazi regime became 
intolerable. I have a photo of him playing his violin for 
me when I was about five years old (shown on the dedica-
tion page).1 On the back side, my mother—who took the 
picture—wrote the name of the song he played for me on 
that day: Guter Mond, du gehst so stille (lovely moon, you 
sail by so silently), a traditional German lullaby.2 That 
was the first live performance I attended, and I still re-
member it quite clearly. Then one day my grandfather 
told me that he must part with his violin—he desperately 
needed the money. I was in tears.3

And then there was the physics book from which he 
studied when he attended the gymnasium (high school). 
It was published in 1897 and came with hundreds of 
beautifully engraved illustrations; what’s more, it re-
ported on the latest developments in physics, including 
the discovery of x- rays (then known as Röntgen rays) 
and their potential benefit to medicine. My grandfather 
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must have studied that book thoroughly, as his hand-
written annotations appear on nearly every page. We sat 
together for hours, going over various subjects which he 
explained to me—my earliest introduction to science. I 
still have that book, and I treasure it immensely (see 
figure P.1). 

In the 1940s, when the dark clouds of war hung over 
the world, my parents hosted occasional evenings of clas-
sical music at their home in Tel Aviv, where a mechan-
ical turntable—a gramophone—spun Bakelite- made 
records 78 rpm. How much I cherished those occasions! 
The gramophone had to be wound manually with a large 
crank—popularly known as a manuela—that allowed 
the machine to function for about ten minutes, just long 

FIGU RE P.1 .  Title page and frontispiece of Grundrifs der Physik (Fundamen-
tals of Physics) by D. K. Sumpfs (Hildesheim, 1897).
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enough to play the two sides of one disk. If you failed to 
rewind it in time, the turntable would slow down, and 
with it the rhythm and pitch of the music. A forty- minute 
Beethoven symphony took up five or six of those records, 
stored in the sleeves of a large ornate book that looked 
like an old- fashioned photo album (the modern word 
“album” for a collection of songs likely comes from those 
physical albums). Each of those tomes was as heavy as a 
thousand- page calculus textbook! Heaven forbid if one of 
the records should slip out of its sleeve and break up on 
the floor. But the greatest concern about playing those 
disks was the stylus, or needle. You were supposed to 
change it every dozen or so hours of playing, lest it be-
come blunt and damage the grooves. These needles were 
made of chrome, and during the war their supply was se-
verely limited. Soon, however, a substitute became avail-
able—wooden needles! Needless to say (no pun intended), 
the sound of those records was quite scratchy, but they 
were my introduction to classical music.

𝄓
“Every intelligent musician should be familiar with 
the physical laws which underline his art,” says Clar-
ence G. Hamilton in his charming little book, Sound and 
Its  Relation to Music, published in 1912. Ignoring for a 
 moment the slightly condescending tenor of his statement 
(note that he addressed it only to male musicians, which 
was of course in line with the social norms of the time), 
it is true that very few among classical composers were 
directly involved in the mathematics or physics of their 
profession. Among the few who were, two names stand 
out: Jean-Philippe Rameau (1683–1764), who wrote an 
extensive treatise on acoustics, and Giuseppe Tartini 
(1692–1770), who discovered what are now known as com-
bination tones (see chapter 5). In our own time things 
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have changed somewhat, and several composers have 
tried—with varying degrees of success—to base their 
music on mathematical principles. Foremost among them 
was Schoenberg (1874–1951), whose serial music will be 
the subject of chapters 9 and 10. I should also mention 
Iannis Xenakis (1922–2001) and Karlheinz Stockhausen 
(1928–2007). The former, having been trained as a civil 
engineer and architect before turning to music, and used 
stochastic principles in his work; his scores often look like 
an assortment of graphs and lines rather than the notes 
and staves of a traditional musical score. Their works 
were initially received with much enthusiasm by avant- 
garde audiences, but whether they will become part of the 
mainstream oeuvre of classical music remains to be seen. 

This, then, is the story of the relations between two 
great disciplines that have so much in common yet have 
always kept a respectable distance between them. It is 
by no means a comprehensive history of the subject, nor 
is it a textbook on the mathematics and physics of music, 
of which there already exist many good books. Rather, 
I attempted to survey the musical- mathematical affinity 
from a historical perspective, highlighting not only the 
facts but also the people behind them—the scientists, in-
ventors, composers, and occasional eccentrics. I have not 
shied away from expressing my own thoughts on several 
issues with which some readers may disagree, such as the 
emotional attributes—greatly exaggerated, in my view—
that are often associated with musical key designations. 
The book is intended for the general reader with an inter-
est in mathematics, music, and science; no mathematical 
background is assumed beyond high school algebra and 
trigonometry, but a basic training in musical notation 
will be advantageous. 

In the end, though, the attempts to relate mathemat-
ics to music are inherently limited by the contradictory 
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goals of the two disciplines: mathematics—and science 
in general—aims at our intellect, our capacity to ana-
lyze abstract patterns and relations in an objective, log-
ical manner, while music strives to touch our hearts, 
to awaken our emotions to its sounds, its rhythms, 
and its temporal and aural patterns. To quote the sign 
that greets visitors to the Musical Instrument Museum 
(MIM) in Phoenix, Arizona: Music is the language of 
the soul.

𝄓
Any discussion of an interdisciplinary subject like this 
one inevitably will touch upon several adjacent fields. It 
goes without saying that the laws of physics play a role 
in music, but so does astronomy—from the Pythagorean 
belief that the planetary orbits are governed by the laws 
of musical harmony, to the discovery in the late nine-
teenth century of resonances among the orbits of planets 
and their satellites, resonances that often bear the ratios 
of common musical intervals (see chapter 12). We might 
also mention the recent detection of sound waves in the 
vast space between galaxies, waves with a specific wave-
length and musical pitch (see Sidebar C)—perhaps the 
ultimate reincarnation of the age- old allegorical Music of 
the Spheres.

In any case, the clear distinction we draw today be-
tween mathematics and the physical sciences—and more 
broadly, the humanities—was not the common practice in 
years bygone; in fact, most of the great minds of classical 
science up until the early nineteenth century considered 
themselves as much mathematicians as philosophers, 
physicists, and natural scientists. They felt at home in 
a wide range of disciplines, which they collectively re-
garded as a quest to understand the workings of nature. 
And that included music.
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𝄓
A note about references: to avoid repetition, books that are 
referred to in the text and appear also in the bibliography 
are identified by the author’s name and book title only. I 
hardly need to mention that all terms related to music, 
as well as the biographies of numerous composers, are 
covered at length in the exhaustive, twenty- nine- volume 
The New Grove Dictionary of Music and Musicians (Mac-
millan, 2001, now also available on the internet at www 
.oxfordmusiconline .com). Excellent biographies of numer-
ous mathematicians can be found at the website of the 
School of Mathematics and Statistics of the University 
of St. Andrews, Scotland (www -  groups .dcs .st -  and .ac .uk / 
~history /Indexes /HistoryTopics .html).

I am deeply indebted to my friends and colleagues 
David Andrea Anati, Wilbur Hoppe, Robert Langer, and 
Michael Sterling for the many discussions we have had 
on questions relating to mathematics and music. I also 
wish to thank the anonymous reviewers who read the 
manuscript and offered their useful comments and sug-
gestions. A big hug goes to Vickie Kearn, my trusted edi-
tor for nearly twenty years at Princeton University Press, 
for her invaluable advice and guidance at all stages of 
writing this book. I am also deeply indebted to the staff at 
Princeton University Press for their tireless care in han-
dling the various phases of the production of this book. 
In particular, I would like to thank Debbie Tegarden, 
who supervised the book’s entire production process 
and was of enormous help in selecting its many illustra-
tions, to Lauren Bucca, who took upon herself to obtain 
many of the permissions needed for these illustrations, 
to Chris Ferrante for his text and jacket designs, and to 
Dimitri Karetnikov, Meghan Kanabay, Elizabeth Blaze-
jewski, and Jacquie Poirier for their collective handling 

http://www.oxfordmusiconline.com
http://www.oxfordmusiconline.com
http://www-groups.dcs.st-and.ac.uk/~history/Indexes/HistoryTopics.html
http://www-groups.dcs.st-and.ac.uk/~history/Indexes/HistoryTopics.html
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of the graphics, digital files and typesetting, to Carole 
 Schwager for her copyediting of the manuscript, and to 
Jodi Beder for her help in transcribing Schoenberg’s tone 
row in chapter 10. My grandson Richard Maor helped me 
greatly in obtaining good images of some of the objects 
shown in the illustrations, and I owe him many thanks. 
And last but not least, it is to my dear wife Dalia that I 
owe my greatest gratitude for encouraging me to see this 
book come to fruition and for her meticulous proofreading 
before it went to the printer. Without her this book would 
have never seen the light of day. Thank you all!

NOTES

 1. I am grateful to my sister, Shulamit Nathansohn, who discovered the 
photo among hundreds we inherited from our parents.

 2. Thanks to the internet I was able to rediscover that song, a good seventy- 
five years after my grandfather played it for me. You can hear it sung by 
Julien Neel at www .youtube .com /watch ?v = 7C _yFytWKlU, or follow the 
notes and lyrics at www .labbe .de /liederbaum /index .asp ?themaid = 25 & 
titelid = 438.

 3. I still have the tuning fork with which he tuned his violin. It has the in-
scription A on one stem; and although rusted, it still produces the note A 
with its correct frequency, 440 hz.

http://www.youtube.com/watch?v=7C_yFytWKlU
http://www.labbe.de/liederbaum/index.asp?themaid=25&titelid=438
http://www.labbe.de/liederbaum/index.asp?themaid=25&titelid=438
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C H A P T E R  1

Prologue:  
A World in Crisis

WHE N , AT THE STROKE  of midnight on December 31, 1900, 
the nineteenth century turned into the twentieth, the 
world was in a state of upheaval. Queen Victoria, until 
then the longest- serving British monarch in the Empire’s 
history, had just twenty- two more days to live. Barely 
nine months into the new century President William 
McKinley was assassinated, being succeeded by Theodore 
Roosevelt. The Boer War between the Dutch and British 
was in its second year and would last for another, afford-
ing Winston Churchill his first appearance on the world 
stage. In the Far East, the Philippines revolted against 
the United States, and the Boxer Rebellion of Chinese 
nationalists against foreign imperialism had just begun.

In the more benign arena of the intellectual world, 
groundbreaking events were happening too: the year 
1900 saw the publication of Sigmund Freud’s first influ-
ential work, The Interpretation of Dreams, and the Vi-
enna premiere of Gustav Mahler’s First Symphony, the 
Titan, conducted by the composer himself. Pablo Picasso 
entered his “Blue Period” (1901–1904), and Max Planck 
introduced a new concept into physics that would soon 
revolutionize all of science: the quantum of energy. If all 
that weren’t enough, David Hilbert, Germany’s foremost 
mathematician at the turn of the century, challenged the 
Second International Congress of Mathematicians, held 
in Paris in 1900, with a list of twenty- three unsolved 
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problems whose solutions he regarded as of utmost im-
portance to the future growth of mathematics—as indeed 
they would prove to be.

Planck’s introduction of the quantum into physics was 
followed five years later by Albert Einstein’s publication 
of his special theory of relativity; together, they would 
mark the end of classical physics that had ruled science 
since the discoveries of Galileo Galilei three centuries 
earlier. But the transition from the old world to the new 
did not go smoothly; on the contrary, it subjected physics 
to its deepest crisis since the sixteenth and seventeenth 
centuries, when Nicolaus Copernicus, Johannes Kepler, 
and Galileo Galilei had overthrown the old Greek picture 
of the universe.

In a remarkable confluence of events, the crisis in 
physics in the closing years of the nineteenth century was 
mirrored in an equally deep crisis in another discipline 
of the human mind: classical music. Oddly, both revolved 
around a common theme—the choice of an appropriate 
frame of reference in which the physical universe and the 
universe of music should be set. Since these parallel de-
velopments provide the background for much of the later 
chapters in this book, I will elaborate here a little on the 
events that have led to them. 

𝄓
In his monumental work The Principia (1687), Isaac New-
ton laid the foundations of dynamics on which scientists 
would base their work for the next 218 years. His mecha-
nistic world picture, in which everything was in a perpet-
ual state of motion governed by the force of gravity, became 
known as the “clockwork universe.” Every physical phe-
nomenon—from the behavior of atoms to the motion of the 
celestial bodies—was ruled by a set of precise, determin-
istic laws: specifically, Newton’s three laws of motion and 
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his universal law of gravitation. Later these laws would 
be formulated in terms of a set of differential equations 
that could be solved, at least in principle, provided that 
the initial state of the system—the position and velocity 
of each of its components—was known at some given time, 
conveniently designated as t = 0. Carried to its extreme, 
this mechanistic picture could be extended to the entire 
universe: if we only knew the position and velocity of each 
single atom at the moment of Creation, the future course 
of the universe would be determined for all time. This 
view, espoused by French mathematician Pierre Simon, 
Marquis de Laplace, would dominate scientific thought for 
nearly two centuries following Newton’s death in 1727.

Hidden in Newton’s grand scheme was an assumption 
that had always been taken for granted and thus rarely 
given much thought: the existence of a universal frame of 
reference, a kind of invisible coordinate system to which 
the position and motion of every particle in the universe 
could be referred. For practical purposes, this universal 
frame of reference was taken to be the system of fixed 
stars, whose position in the celestial dome seemed to 
have been unchanged over many generations (although 
Edmond Halley in 1718 showed that these stars have 
their own motion and were thus anything but fixed). The 
fixed stars were thought to belong to our own galaxy—the 
Milky Way—which was therefore given the role of a refer-
ence system at absolute rest, a rock- solid anchor to which 
everything else could be referred. 

That this assumption was questionable didn’t escape 
an occasional scrutinizing eye—least of all that of New-
ton, who was not entirely at ease with it. Already half a 
century earlier Galileo had realized that motion, by its 
very nature, is relative. As an example he gave the case of 
two ships sailing in calm waters far away from land. The 
passengers of either ship would find it impossible to tell 
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which ship was stationary and which was moving, theirs 
or the other ship. This became known as the Galilean 
principle of relativity, and Newton, who was thoroughly 
familiar with Galileo’s work, was fully aware of it. Yet the 
question of who is “really” moving and who is at rest was 
ignored by nearly all scientists up to the closing years of 
the nineteenth century. And if any proof was needed that 
the system was working just fine, it was amply provided 
by the spectacular triumphs of Newtonian mechanics, 
from the correct prediction of the return of Halley’s Comet 
in 1758 to the discovery in 1846 of a new planet, Neptune, 
the eighth planet out from the Sun, by the sheer power of 
mathematics. It seemed that the clockwork universe was 
doing its work with unfailing mathematical precision. 

But in the seventeenth century a new feature of the 
physical world was discovered: electricity. At first arous-
ing mere curiosity in the form of static electricity—like 
the jolt you get when touching a metallic object on a 
cold, dry day—electricity soon became a phenomenon to 
be reckoned with. For example, an electric charge could 
travel along a metal wire and be transported from one 
place to another—an electric current. Even more surpris-
ing was the discovery that an electric current can deflect 
the needle of a magnetic compass; in other words, the cur-
rent generates a magnetic field around the wire. 

In the 1830s Michael Faraday, a self- taught English sci-
entist, ran a series of experiments that firmly established 
the nature of electricity and its relation to magnetism. Far-
aday (1791–1867) was the experimental scientist par ex-
cellence: his world was the laboratory, where he tinkered 
with his gadgets, observed the outcome of his experiments, 
and drew his conclusions. But it took another British sci-
entist to unify Faraday’s findings into a coherent theoreti-
cal structure. That task befell the Scottish physicist James 
Clerk Maxwell (1831–1879). Maxwell formulated Faraday’s 
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experimental laws as a set of four differential equations 
that govern all electric and magnetic phenomena—hence-
forth to be called electromagnetism. At the core of Max-
well’s theory was the concept of a field, a kind of invisible 
medium that carries electromagnetism through space as 
electromagnetic waves. Surprisingly, the speed of propa-
gation of these waves turned out to be none other than the 
speed of light, 299,792 km/sec in vacuum. This number 
would be given the letter c, probably for the first letter of 
the Latin word for speed, celeritas.1 It would become one of 
the most important numbers in physics.

Maxwell’s equations, with their elegant internal sym-
metry, became the paradigm that theoretical physics 
strove to follow for the next hundred years, but they also 
made it clear that Newton’s mechanistic world picture 
was no longer sufficient to explain the full range of the 
newly discovered phenomena. It seemed that physics com-
prised two distinct branches, each with its own laws. On 
one hand there was the mechanistic world, which also in-
cluded heat and sound (the former because it is generated 
by the motion of molecules, the latter because it is the re-
sult of mechanical vibrations transmitted through the air 
as pressure waves). On the other was electromagnetism, 
which also included optics (because Maxwell’s equations 
showed that light is an electromagnetic wave, having 
a particular frequency range that our eyes perceive as 
colors). The disparity between these two branches—fore-
shadowing the schism between relativity and quantum 
mechanics in the twentieth century—had to be bridged 
by some grand unifying theory. 

𝄓
The fact that electromagnetic waves could propagate 
through empty space did not sit well with nineteenth- 
century physicists. Still deeply rooted in the Newtonian 
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mechanistic world picture, they tried to invoke the seem-
ingly analogous case of sound waves propagating through 
air. Here is a material medium that transmits the vibra-
tions of, say, a violin string as pressure waves through 
space, in much the same way as ripples in a pond are 
propagated as surface waves on the water.2 Clearly there 
must likewise exist some material medium permeating 
space through which electromagnetic waves are propa-
gated. Thus was born the concept of the ether (also known 
as luminiferous medium); it would become a fixture of late 
nineteenth- century physics.

The ether was more than just a medium for propagat-
ing electromagnetic waves; it also served as a convenient 
cosmic reference system to which all motion could be re-
ferred. But this at once created a problem: if all motion 
is to be measured relative to the ether, then the speed 
of light, as seen by an observer, must depend on the ob-
server’s own speed relative to the ether. Specifically, if a 
source of light is moving toward a stationary observer at 
the speed v, the emitted light should reach the observer 
at the speed c + v, while if the source is receding from 
the observer, the perceived speed should be c – v. A sim-
ilar effect should occur if the source is stationary and 
the observer is moving toward or away from it. In other 
words, the speed of light as seen by the observer depends 
on the observer’s own speed and is therefore a variable 
quantity. And that was the crux of the crisis: Maxwell’s 
equations do not require the presence of any material me-
dium for the propagation of electromagnetic waves; the 
electromagnetic field itself is the medium. So the speed 
of light must be a universal constant, independent of the 
ob server’s motion relative to the source.

To settle the question once and for all, a famous exper-
iment was conducted in 1887 at Case Western Reserve 
University outside Cleveland, Ohio, by two American 
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physicists, Albert Abraham Michelson (1852–1931) and 
Edward Williams Morley (1838–1923). Their aim was 
to measure the speed of light relative to the Earth, the 
latter serving as a moving platform that travels through 
space at about 30 km/sec in its orbit around the Sun. If 
the ether exists, an observer on the Earth should perceive 
the speed of light to be c + 30 km/sec when moving toward 
a distant source of light, and c – 30 km/sec when mov-
ing away from it half a year later. The difference, though 
exceedingly small (Earth’s speed is about 1/10,000 that 
of the speed of light), could still be detected by optical 
means. But despite several attempts to do just that, no 
difference whatsoever was detected. The speed of light 
was the same regardless of the direction of Earth’s motion 
relative to the ether.

Various attempts were made to explain the negative 
results of the Michelson– Morley experiment, using all 
kinds of assumptions that were proposed only for this 
one purpose and thus lacking credibility. It befell Albert 
Einstein (1879–1955), then a twenty- six- year- old junior 
clerk at the Swiss Federal Patent Office in Bern, to give 
the correct explanation: the ether does not exist—it is pure 
fiction. Consequently, there is no single, universal frame 
of reference at absolute rest relative to which all motion 
can be referred. Abandoning the ether, however, came 
at a price, for if the speed of light should be the same 
in all frames of reference, then not only space, but also 
time must be relative. Absolute space and absolute time 
became things of the past. What’s more, space and time 
ceased to exist as separate entities, to be replaced by a 
single, four- dimensional reality: spacetime.

Einstein published his special theory of relativity in 
1905. It is called “special” because it applied only to the 
special case of frames of reference moving relative to one 
another at constant speed. Over the next ten years he 
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tried mightily to extend the theory to all frames of refer-
ence, specifically to accelerating ones. He published his 
magnum opus, the general theory of relativity, in 1916, 
and it was at once hailed as the most elegant theory 
ever proposed in physics. General relativity replaced the 
Newtonian concept of gravitation as a force acting at a 
distance with a geometric interpretation, in which space-
time deviates from its flatness in the presence of mass; it 
becomes curved.

Among other things, the theory predicted that a beam 
of light would be deflected from its straight- line path in 
the presence of a heavy body such as the Sun. This was 
confirmed at the total solar eclipse of May 29, 1919, when 
a field of stars near the eclipsed Sun was photographed 
and compared with the same field several months later. 
The positions of the stars were carefully measured and 
found to deviate from their normal positions by just the 
amount predicted by Einstein. When the results were an-
nounced at a special joint meeting of the Royal Society 
and Royal Astronomical Society in London in November 
of that year, Einstein overnight became world famous.3 
As of today, general relativity has passed every experi-
mental test to which it has been subjected.

𝄓
At the very same time that classical physics was strug-
gling with the ether problem, classical music went 
through its own crisis. A century earlier, Franz Joseph 
Haydn (1732–1809) and Wolfgang Amadeus Mozart 
(1756–1791) set the stage by establishing the symphony 
as the centerpiece of classical music. But though their 
music was supremely beautiful, they wrote it chiefly for 
the aristocratic elite of Vienna, who wanted to enjoy a 
good evening of entertainment in the palaces of the rich 
and mighty. It befell Ludwig van Beethoven (1770–1827) 
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to transform the symphony into a powerful emotional 
experience, capable of lifting the human spirit just as a 
great work of literature could—and he addressed it to 
the entire world. Haydn wrote 104 symphonies (actually 
105, but one is lost), Mozart 41, and Beethoven just nine,4 
but what power ful works they were! His last, the Ninth 
( Choral) Symphony, first performed in 1824 and scored 
for a large orchestra, four vocal soloists and a choir, has 
become the icon of universal brotherhood—so much so 
that it was performed in 1989 in the shadow of the fallen 
Berlin Wall to mark the reunification of Germany.5

Beethoven died in 1827, exactly one hundred years after 
Newton. And just as with Newton, the ghost of Beetho-
ven would loom over Western music for the next hundred 
years. Whether consciously or not, no major nineteenth- 
century composer dared to write more than nine sympho-
nies (Franz Schubert wrote eight, Robert Schumann and 
Johannes Brahms four each, Hector Berlioz just one). The 
“curse of the ninth” so much gripped Gustav Mahler that 
(according to the account of his wife, Alma) he feared he 
would die if he attempted to write a tenth symphony—and 
indeed his foreboding came true: the work was left unfin-
ished at his death in 1911. But while the symphonic output 
of individual composers declined, the orchestral forces call-
ing for their performance steadily grew. Mahler’s Eighth, 
the Symphony of a Thousand (1906), was scored for eight 
vocal soloists, a double choir, and a huge orchestra, a com-
bined force that dwarfed even Beethoven’s Ninth. 

But it wasn’t only the size of the orchestra or the emo-
tional power of the symphonic genre that had expanded 
since Beethoven; the harmonic range of music underwent 
an even greater expansion. Before Beethoven, the choice 
of permissible chords available to a composer was quite 
limited; basically, it was confined to consonant or pleas-
ing chords, such as the major triad C–E–G. This was 
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a result of the chief role of pre- Beethovenian music: to 
please the listener. Whether in a public concert, in a royal 
reception, or in the solemn setting of the church, music 
was meant to entertain, or in the latter case, to arouse 
in the audience a sense of awe at God’s creation. “Music, 
even in the most terrible situations, must never offend 
the ear” wrote Mozart in 1782. Even when a work was 
composed in a minor key, characterized by the somber- 
sounding minor triad C–E- flat–G (called minor because 
the interval C–E- flat is smaller than C–E by a half tone), 
the chords themselves were limited to consonances. An 
occasional dissonance might be inserted now and then, 
intended to create a momentary sense of tension or par-
ody, but it was a brief distraction, to be “resolved” imme-
diately to consonant chords again.

Beethoven changed all this. In his Third Symphony, 
the Eroica, first performed in public in 1805, he repeat-
edly used jarring dissonances and syncopations (off- the- 
beat stresses) with the explicit intention of shocking his 
listeners, and shock them he did: the symphony was 
sharply criticized for transgressing all accepted norms of 
“good” music. Beethoven, as always unperturbed by pub-
lic criticism, stayed his course, and soon other composers 
followed suit: Berlioz (1803–1869) routinely used formerly 
“forbidden” chords to dramatize his music, and Richard 
Wagner and Mahler broke traditional limits even fur-
ther. By midcentury the symphony had become a power-
ful emotional experience, capable of lifting the listener to 
the highest spheres of excitement, fervor, even fear. The 
story is told of Berlioz, the most romantic of the early Ro-
mantic composers, who, while attending a performance of 
a Beethoven symphony, was so overcome by emotion that 
he was visibly trembling. The person seated next to him 
turned to Berlioz, saying “Monsieur, why don’t you go out-
side for a little break so you can come back and enjoy the 
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music?” To which Berlioz answered in disgust, “Do you 
really think I came here to enjoy myself?”6 The idea that 
music—and in particular symphonic music—must “never 
offend the ear” was a thing of the past.

With the abandonment of traditional harmonies came 
the abandonment of tonality. For three centuries, from 
about 1600 to 1900, the idea that a piece of music should 
be anchored to a basic key around which it evolves, and to 
which it ultimately returns, had been the very foundation 
of Western music. This principle of tonality, or key- based 
music, gave the piece a sense of direction, of purpose. To-
nality was to classical music what the ether was to clas-
sical physics—a fixed frame of reference to which every 
note of the work was related. 

But as the nineteenth century came to a close, this 
time- honored principle came under attack. Already in 
Berlioz’s music, and much more so in Mahler’s, the sense 
of tonality became increasingly vague, making it diffi-
cult to sense where one stood as the work progressed: 
music became ever more atonal. It was against this back-
drop that Arnold Schoenberg—then still a relatively un-
known Viennese composer and still using the German 
umlaut in his name—sensed that tonality had run its 
course. He resolved to devise a new system of compo-
sition which, he hoped, would put tonality to rest once 
and for all. To what extent his mission has succeeded we 
shall soon see.

NOTES

 1. See the article “Why Is c the Symbol for the Speed of Light?” by Philip 
Gibbs (2004), at http:// math .ucr .edu /home /baez /physics  /Relativity /Speed 
OfLight /c .html.

 2. With one difference: in sound waves, the air molecules vibrate in the 
same direction as the wave itself (longitudinal waves), whereas surface 
waves propagate at right angles to the up- and- down motion of the water 
molecules (transverse waves).

http://math.ucr.edu/home/baez/physics/Relativity/SpeedOfLight/c.html
http://math.ucr.edu/home/baez/physics/Relativity/SpeedOfLight/c.html
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 3. The dramatic aftermath of this historic event has been described many 
times; see, for example, Ronald W. Clark, Einstein: The Life and Times 
(New York: Avon Books, 1971), pp. 263–264. In recent years some doubt 
has been cast on the validity of the eclipse results; see John Waller, Ein-
stein’s Luck: The Truth Behind Some of the Greatest Scientific Discoveries 
(Oxford: Oxford University Press, 2002), chap. 3.

 4. Not counting the so- called Battle Symphony (also known as Wellington’s 
Victory), a bombastic piece of musical trivia that, if anything, serves to 
show that even a great composer is capable of producing works of utter 
mediocrity. It enjoyed a huge success in Beethoven’s time; today it is al-
most forgotten.

 5. But also by the Berlin Philharmonic in 1942, with top Nazi officials at-
tending, to boost the nation’s morale after the defeat of the German Army 
at the Battle of Moscow.

 6. Norman Lebrecht, The Book of Musical Anecdotes (New York: The Free 
Press, 1985), p. 118.



C H A P T E R  2

String Theory, 
500 BCE

IT IS A STR ANGE TRUISM :  the earliest experimental sci-
ence to establish quantitative relations between ob-
servable entities was acoustics. Pythagoras of Samos 
(ca. 585–500 BCE), the legendary philosopher who will 
forever be associated with the right- triangle theorem 
named after him, began his scientific career by investi-
gating the vibrations of sound- emitting objects. Accord-
ing to legend, while walking down a street one day he 
heard sonorous sounds coming from a blacksmith’s shop. 
Stopping by to investigate, he noticed that the sound had 
originated from the craftsman’s hammer hitting a metal 
sheet; the heavier the sheet, the lower the pitch of the 
sound it emitted. 

Not being satisfied with just a qualitative observation, 
Pythagoras went on to experiment with all kinds of vi-
brating bodies—taut strings, water- filled glasses, bells, 
and pipes (figure 2.1). He is said to have built a primitive 
musical instrument, the monochord—a single string at-
tached to a sound board with a numerical scale along it 
(figure 2.2). The string’s effective length could be varied 
by inserting a small bridge between the string and the 
board. Pythagoras found that, when the string was al-
lowed to vibrate first at its full length and then stopped 
at half its length, the two sounds bore a pleasant, har-
monious affinity to one another: they were separated by 
an octave. A melody played in different octaves sounds 
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essentially identical, like walking down the hallway on 
different floors of a hotel. The octave, Pythagoras had 
found, corresponds to the ratio 1:2.

Having established the octave as a fundamental musi-
cal interval, Pythagoras next attempted to subdivide this 

FIGU RE 2 .1 .  Pythagoras experimenting with sound-emitting objects. From 
Franchino Gaffurio, Theorica Musicae (Milan, 1492).
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rather large interval into smaller parts. He experimented 
with other ratios of string length, leading him to a dis-
covery that left a deep impression on him: ratios of small 
numbers produced harmonious, pleasant combinations of 
sounds—consonances—whereas ratios of larger numbers 
produced dissonances. Foremost among the former were the 
octave (1:2), the fifth (2:3), and the fourth (3:4) (the names 
derive from the position of these intervals in the musical 
scale; see figure 2.3). Pythagoras saw in this a sign that 
nature itself—indeed, the entire universe—is governed by 
simple numerical ratios. Number rules the universe became 
the Pythagorean motto, and it would dominate scientific 
thought for the next two thousand years.

FIGU RE 2 . 3 .  The octave, perfect fifth, and perfect fourth.

FIGU RE 2 . 2 .  Monochord.



16 CHAPTER 2

𝄓
We must digress here for a moment and mention that be-
ginning around 1600, it became the practice to describe 
musical intervals in terms of their frequency ratios, rather 
than ratios of string length. For any given string, the fre-
quency is inversely proportional to the string’s length, so 
the octave, the fifth, and the fourth correspond to the ra-
tios 2:1, 3:2, and 4:3, respectively. We will adhere to this 
practice in what follows.

𝄓
The three intervals just mentioned were to play a funda-
mental role in music. Pythagoras called them perfect con-
sonances and used them to construct a musical scale—
the first known attempt to organize musical sounds into 
an orderly numerical system. He found that, starting 
with any note, going up a fifth and then another fourth 
brings us to a note exactly one octave above the starting 
note. Translated into ratios, the relation can be expressed 
as 2

3
3
4

1
2# = . This is true in general: to add two intervals, 

multiply their frequency ratios. Unbeknownst to him, Py-
thagoras had discovered the first logarithmic relation in 
history.

Next, he took each perfect consonance and raised its 
ratio to successive powers. Powers of 2:1 merely carry us 
to higher octaves, while powers of 4:3 result in inversions 
of 3:2 (an interval is said to be inverted if its lower note 
is moved up by one octave or its higher note down by one 
octave). This left him with powers of 3:2, starting with 
( ) 1

3
2

2
3 – =  and leading to the following sequence: 

1
.

2
3

3
2

2
3

2
3

2
3

2
3

4
9

2
3

8
27

2
3

16
81

2
3

32
243
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=
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Of the seven ratios in this sequence, only the second 
and third lie within one octave. To bring the remaining 
ratios into the range of an octave, we multiply or divide 
them by powers of 2:

.3
4 1 2

3
8
9

16
27

64
81

128
243

When this new sequence is arranged in ascending 
order and augmented by the ratio 2:1 to complete it to a 
full octave, we get the following array:

.8
9

64
81

128
2431 3

4
2
3

16
27

1
2

This sequence is known as a diatonic scale. It gives the 
ratio of each note to the fundamental (lowest) note. But in 
music, what matters most is the ratio between two notes, 
that is, the interval separating them. By taking the ratio 
of each note to the one preceding it, we get the sequence

,8
9

8
9

8
9

8
9

8
9

243
256

243
256

which represents the intervals of the Pythagorean dia-
tonic scale. It consists of just two distinct intervals, a 
large one of 9:8 (= 1.125), called a whole tone, and a small 
one of 256:243 (~ 1.053), called a semitone or half tone.

𝄓
At first thought, the Pythagorean scale seems like a 
great invention; it stands out for its simplicity, employing 
 powers of just one ratio, 3:2. But this simplicity is deceiv-
ing, and for a number of reasons. First, as every music 
student learns early on, there is a scheme called a circle 
of fifths: start with any note and go up in a succession of 
fifths. After doing this twelve times (and in the process 
going through a series of sharps and flats, notes that are 
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a half tone above or below those of the diatonic scale), you 
should arrive back at the base note, albeit seven octaves 
higher (see figure 2.4). Alas, this is impossible to do with 
the Pythagorean scale: no positive integer values of m 
and n can ever satisfy the equation ( ) 2m n

2
3 = .1

But even more troubling is the fact that the Pythago-
rean scale was out of tune with the natural sequence of 
harmonics, or overtones, generated by practically all mu-
sical instruments. When a string is vibrating, it emits a 
note with a definite pitch that can be placed on the musi-
cal staff, but there are also other, higher notes that come 
along with it. This mix of overtones gives the sound its 
characteristic color, or timbre—the quality that distin-
guishes the sound of a violin from that of a clarinet, even 
when they play the same note.

As we will see in the next chapter, the frequencies of 
these overtones are always whole multiples of the string’s 
lowest, fundamental frequency, so they follow the se-
quence 1, 2, 3, . . . (relative to the fundamental). In theory 

FIGU RE 2 . 4 .  The circle of fifths.
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this series can go on forever, producing an infinite blend 
of ever higher notes. Usually, however, the amplitudes of 
these overtones, and therefore their intensities, quickly 
diminish as we go up the sequence, making them increas-
ingly feeble and difficult to hear. Indeed, for nearly two 
thousand years they remained hidden behind the funda-
mental tone, barely noticed until the eighteenth century, 
when a little- known French scientist by the name Joseph 
Sauveur confirmed their existence (see chapter 3). Never-
theless, these harmonics play a crucial role in music, for 
they are the raw material from which the natural musi-
cal intervals are derived. The Pythagorean scale, being 
based solely on the ratio 3:2 while leaving out the remain-
ing harmonics—including such important ratios as 5:4 
and 6:5 (a major third and a minor third, respectively)—
was therefore out of sync with the laws of acoustics; it was 
a purely mathematical creation, divorced from physical 
reality. This was the first known attempt to impose math-
ematical rules on music, but it would not be the last.

𝄓
The Pythagorean scale was typical of the Pythagorean 
philosophy in general. Obsession with musical numerology 
led Pythagoras’s followers to believe that everything in 
the universe, from the laws of musical harmony to the mo-
tion of the celestial bodies, was governed by simple ratios 
of whole numbers. To understand this giant leap of faith, 
we must remember that in Greek tradition music ranked 
equal in status to arithmetic, geometry, and spherics (as-
tronomy)—the quadrivium comprising the four disciplines 
every learned person was expected to master, the equiva-
lent of the core curriculum of today’s university.2

Significantly, to the Pythagoreans the word “arithme-
tic” had a different meaning than it has today; it meant 
number theory, the study of the properties of integers, 
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rather than the practical skills needed to compute with 
them. Likewise, they regarded the music component of 
the quadrivium as referring to music theory, the study of 
scales and harmony, not the actual art of playing music. 
This was typical of the aloof attitude of the Pythagore-
ans to all things practical. Theirs was a perfect universe, 
governed by notions of beauty, symmetry, and harmony 
but removed from daily, mundane considerations. It may 
have been one reason why they kept all their discussions 
secret, fearing they would be ridiculed by their fellow 
citizens, the vast majority of whom had to toil daily to 
eke out a living. None of the Pythagorean writings—if 
they left any writings at all—survived. All that we know 
about them came from later writers, who lived hundreds 
of years after Pythagoras and often outdid each other in 
extolling the virtues of their revered master. 

But if their writings did not survive, the Pythagorean 
legacy lasted well over two thousand years. Number rules 
the universe became a rallying motto to generations of sci-
entists and philosophers, who sought to explain the mys-
teries of the cosmos on the basis of musical ratios or in 
terms of simple, elegant geometric shapes. The  planets, 
for example, had to move around the Earth in perfect 
circular orbits; it was inconceivable that any shape other 
than the perfectly symmetric circle could rule the uni-
verse. Thus, by subjugating the laws of nature to their 
ideals of beauty, harmony, and symmetry, the Pytha-
goreans may have actually impeded the progress of sci-
ence for the next two millennia.

One of the last Pythagoreans was the eminent German 
astronomer Johannes Kepler (1571–1630), considered the 
father of modern astronomy. Kepler, at once a devout mys-
tic and an ardent believer in the Copernican heliocentric 
system, spent more than half his life trying to derive the 
laws of planetary orbits from those of musical harmony. 
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He believed that each planet, in its orbit around the Sun, 
plays a tune that our ears are unable to hear, being below 
the range of audible frequencies (not to mention that it 
was produced in the vacuum of outer space, where sound 
cannot propagate). He actually assigned a celestial mel-
ody, written down in musical notation, for each of the five 
then- known planets (figure 2.5)—the celebrated music of 
the spheres. It was only after decades, during which he fol-
lowed this blind path, that Kepler finally abandoned the 
Greek circular orbits in favor of ellipses, to which Newton, 
a generation later, would add the parabola and hyperbola.

NOTES

 1. This can be seen by rewriting the equation as 3m = 2k, where k = m + n. 
Now the left side of this equation is a power of 3 and is therefore an odd 
integer, while the right side is a power of 2 and thus even.

 2. The term quadrivium is attributed to Boethius (sixth century CE), but 
the curriculum it embodied was already outlined in Plato’s The Republic. 
Together with the trivium (grammar, logic, and rhetoric), it comprised the 
seven liberal arts of medieval universities.

FIGU RE 2 . 5 . Kepler’s planetary music. From Harmonices Mundi, Libri V 
(Linz: Jo Planck, 1619).
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It’s All about 
Nomenclature

J UST AS IN MATHE MATICS ,  musical terminology can 
sometimes be ambiguous. To avoid the inconve-
nience of referring to different notes of a scale by 
their actual designations, like C D E F G A B Cl, the 
Do- Re- Mi nomenclature—known as solmization—is 
often used. Here Do always stands for the base note 
(the tonic), regardless of its actual pitch, Re stands 
for the next note above it in the diatonic scale, and 
so on: Do, Re, Mi, Fa, Sol, La, Si (sometimes called 
Ti), and Do again. There is also a variant of this sys-
tem, in which Do stands for the actual note C, Re 
stands for D, and so on. Solmization is used mainly 
in France and Italy, while English- speaking coun-
tries adhere to the actual names of the notes. So 
next time you listen to Julie Andrews singing “Do- 
Re- Mi” to her foster children in The Sound of Music, 
you might wonder what notes she is actually using. 

To confuse matters further, the Germans call a 
major scale dur and a minor scale moll; flats and 
sharps are called ces and cis in German but bémol 
and dièse in French and Italian. Even the termi-
nology for the time values of notes is hardly in uni-
versal agreement: in the United States the terms 
whole note, half note, quarter note, eighth note, and 
sixteenth note are used, but in England these are 
known as semibreve, minim, crotchet, quaver, and 
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semiquaver, respectively. Nowhere, it seems, is Win-
ston Churchill’s famous comment, “We [Britons and 
Americans] are divided by a common language” more 
true than in the language of musical terminology. 

Just as we thought we had clarified all these am-
biguities, there comes the question of pitch—the 
actual frequency of a note. The modern standard 
is to assign the note A above middle C the fre-
quency 440 Hz (hertz, or cycles per second). This 
is the note played by the oboe before the start of a 
concert, to which the entire orchestra tunes its in-
struments. The note Cl, one- and- a- half whole tones 
above A, has the frequency 440 × 9/8 × 16/15 = 528 Hz 
when tuned according to the just- intonation scale, 
but ( )440 2 52312 3# =  Hz if tuned by the equal- 
tempered scale (see chapter 6). The tuning based on 
A = 440 Hz is called concert or orchestral pitch; it 
was adopted in 1939 as the standard international 
orchestral pitch. For some purposes, however, it is 
advantagaeous to use C = 256 Hz as the reference 
pitch; being a power of 2 (256 = 28), this scientific 
pitch has the convenience that all notes designated 
as C, regardless of their actual position on the staff, 
have frequencies that are powers of 2 (for example, 
Cl = 512 = 29). In this system, the note A is about a 
half- tone lower than orchestral A. 

Finally, the words tone and note have slightly dif-
ferent meanings, depending on who uses them: in 
the United States tone usually refers to the actual 
sound, while note refers to its notation on the musi-
cal staff; in England the two terms refer to both the 
sound and its written sign. In this book I will use 
the two terms interchangeably.
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Enlightenment

AS JOHANNES KE PlE R WAS ATTE MPTING  to apply the laws 
of musical harmony to the heavenly bodies, three of his 
contemporaries chose to follow a more earthly path: they 
investigated the physical laws governing vibrating bod-
ies. Priority in this reawakening science of acoustics goes 
to Galileo Galilei (1564–1642), who seems to have been 
the first to explicitly make the connection between the 
frequency of a vibrating body and the pitch of the sound 
it emits. Galileo’s father, Vincenzo Galilei (1520–1591), 
was a lute player, composer, and music teacher, so young 
Galileo was thoroughly versed in the world of music, and 
thus with the physics of vibrating bodies. Vincenzo was 
a nonconformist; he disagreed with many of the prevail-
ing Church doctrines, ranging from philosophy to music 
theory, that were based on the teaching of Aristotle. He 
could not accept the Pythagorean view that subjected na-
ture, and music as well, to abstract mathematical laws 
that had no basis in the physical world. Number rules the 
universe, the Pythagorean motto, was to him an outdated 
principle that had little to do with actual observation. For 
example, Vincenzo discovered that the pitch of a vibrat-
ing string is proportional to the square root of the tension 
at which it is held; previously it had been assumed that 
only the first power of the tension was involved. This may 
have been the earliest known discovery of a nonlinear law 
in physics. 

Young Galileo must have gotten something of his 
 father’s nonconformist character. When only seventeen 
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years old, while attending Mass at the cathedral of Pisa, 
he noticed that the large chandelier hanging from the 
dome was swinging in such a way that the chandelier al-
ways took the same time to complete each cycle, regard-
less of how small or large the swing was; its period of 
oscillation was independent of the amplitude.1 Equally 
surprising, the period was also independent of the pendu-
lum’s weight, in direct contradiction to Aristotle’s teach-
ing that heavy objects fall faster then light ones. In fact, 
the period depended only on the pendulum’s length and 
on the acceleration due to gravity (about 9.81 m/sec2).2 
These discoveries, arrived at by timing the oscillations 
against the beat of his pulse, greatly impressed Galileo 
and piqued his interest in the theory of vibrating bodies. 

In 1638, while spending his final years confined to 
house arrest following his infamous trial by the Roman 
Inquisition, Galileo wrote his last major work, Dialogues 
Concerning Two New Sciences. Afraid to publish it in his 
native country, Italy, for fear of provoking the Church yet 
again, he arranged for friends to publish the work in the 
Netherlands, beyond the Church’s immediate reach. The 
work is in the form of a conversation among three friends, 
Galileo himself being one of them under the disguised 
name Salviati. It is a popular exposition, aimed at the 
general reader and written in vernacular Italian rather 
than Latin, the common language of scholarly discourse 
at the time. 

The Dialogues span four days and cover a wide range 
of subjects. Toward the end of the first day, the discussion 
turns to the nature of mechanical vibrations and the mu-
sical sounds they generate. Here, perhaps for the first time 
in a major work on physics, the word frequency (frequenza) 
appears in print. In a rather long verbal  explanation—this 
being a popular exposition, Galileo avoided using explicit 
mathematical formulas—he says that the frequency of a 
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vibrating string is inversely proportional to its length, di-
rectly proportional to the square root of the tension under 
which it is held, and inversely proportional to the square 
root of the string’s weight (the actual formula is f l

T
2
1=  , 

where T is the tension,  (Greek lambda) the string’s lin-
ear density, and l its length). Anyone who has ever played 
a stringed instrument is, of course, familiar with the es-
sentials of this formula: you can raise the pitch by either 
shortening the effective length of the string by pressing 
your finger against a fret, or by tightening the screw 
holding the string in place, or again by using a string of 
a lighter material. 

Next, the three interlocutors attempt to explain why 
certain musical intervals are pleasing, while others are 
disagreeable. Galileo puts forward an analogy with the 
motion of two pendulums whose periods are in the ratio 
of 2:1 (an octave in musical terms). For every full swing 
of the longer pendulum, the shorter one will complete 
two swings, making them oscillate in sync. If we were 
to follow their motion visually, the image would be that 
of a pleasing, harmonious recurrence. For the ratio 3:2 
(a fifth), one pendulum will complete two swings in the 
same time that the other completes three—still a visually 
pleasing combination. But a ratio of 9:8 (a major second) 
would appear to the eye as a distinctly chaotic motion, a 
visual dissonance. Worse still, if the ratio were an irratio-
nal number, the combination would produce, in Galileo’s 
words, “a harsh effect on the recipient ear.” He cites as 
an example the ratio :2 1, the dissonant tritone (three 
whole tones, such as from C to F- sharp), an interval that 
had been avoided by composers up until the twentieth 
century.3

Galileo, of course, was walking on thin ice here: he 
called his pendulum demonstration “a method by which 
the eye may enjoy the same game as the ear,” ignoring the 
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fact that aural and visual perceptions are entirely differ-
ent things, and drawing an analogy between them can be 
misleading (we will have a chance to see this in chapter 
5). At any rate, in the Dialogues he brought his two skep-
tical colleagues around to agree with his views, and the 
three conclude their first day in complete harmony. 

𝄓
Now it is one thing to write down a formula for the fre-
quency of a vibrating string, but quite another to actu-
ally measure the frequency—to calibrate the formula, in 
the jargon of physics. This task befell a French monk and 
friar of the Minim order, Marin Mersenne (1588–1648). 
A self- taught man of many interests, Mersenne started 
his career by studying theology, but soon realized that 
his real calling was mathematics and science, particu-
larly acoustics. Mersenne made friends with many of the 
leading scientists of the time, among them Galileo, René 
Descartes, Blaise Pascal, and Christiaan Huygens, and 
he kept a voluminous correspondence with them. He thus 
served as a kind of clearinghouse for disseminating their 
latest discoveries, at a time when scholarly journals, sci-
entific conferences, and academic societies were not yet 
known. 

Mersenne is remembered today mainly for a certain 
class of prime numbers named after him. A prime num-
ber, or prime for short, is an integer greater than 1 that 
can be divided evenly only by itself and by 1. Any integer 
greater than 1 is either a prime or a composite number (1 
itself is considered neither prime nor composite). The first 
ten primes are 2 (with the distinction of being the only 
even prime), 3, 5, 7, 11, 13, 17, 19, 23, and 29. The signifi-
cance of the primes in number theory comes from the fact 
that every composite number can be written as a product 
of primes in one and only one way. For example, 12 = 3 × 4 
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= 3 × 2 × 2, or alternatively 12 = 2 × 6 = 2 × 2 × 3; except 
for their order, we end up with the same prime factors. 
This fact is known as the fundamental theorem of arith-
metic. Euclid, in his classic work The Elements, written in 
Alexandria around 300 BCE, proved that there is no end 
to the primes: their number is infinite. As of this writ-
ing, the largest known prime is 274,207,281 – 1, a gargantuan 
22,338,618- digit number that would fill some 3,200 pages 
if printed.4

Mersenne was interested in a special class of primes 
of the form Mn = 2n – 1, where n itself is prime (if n is 
composite, Mn is also composite; for example, M4 = 24 – 1 = 
15 = 3 × 5). For n = 2, 3, 5, and 7 we get Mn = 3, 7, 31 and 
127, all primes. But for the next prime value of n, 11, we 
get M11 = 211 – 1 = 2,047 = 23 × 89, a composite number, 
showing that the requirement that n must be prime is a 
necessary, but not sufficient condition for Mn to be prime. 
In 1644 Mersenne claimed that Mn is prime for n = 2, 3, 
3, 7, 13, 17, 19, 31, 67, 127, and 257, and composite for all 
other values of n under 257. Some of his entries were later 
proven wrong: M67 and M257 are composite, and he omit-
ted the primes M61, M89, and M107. As of this writing, only 
forty- nine Mersenne primes are known; the largest, dis-
covered in 2016, is the prime mentioned in the preceding 
paragraph. It is not known how many Mersenne primes 
exist, nor even if their number is finite or infinite.5 

This, at any rate, is what you will find about Mersenne 
in nearly every textbook on number theory, but almost 
nothing else. Even among number theorists, few are 
aware of Mersenne’s contribution to music theory. In the 
span of two years, this savant published two influential 
books, Harmonicorum Libri (1635), which contained the 
first correct published theory of vibrating strings, to be 
followed a year later by his Harmonie Universelle: The 
Books on Instruments (figure 3.1).6 This monumental 



FIGU RE 3 .1 .  Title page of Mersenne’s Harmonie Universelle (1636).
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work—the English edition is 572 pages long—is written in 
seven parts (“books”) and contains more than a hundred 
illustrations of various musical instruments, numerous 
musical quotations, detailed discussions of different tun-
ing systems, and numerical calculations and tables—a 
complete survey of music theory as it was known at the 
beginning of the Baroque period. 

But Mersenne was not just a theorist; he was the first 
to actually measure the frequency of various musical 
notes. Using a monochord, he adjusted the length of its 
string until the emitted note had a recognizable pitch. 
He then doubled the length several times (making sure 
the tension stayed the same) until the vibrations were so 
slow that he could count them. Because the initial and 
final notes were separated by an exact number of octaves, 
Mersenne was able to determine the frequency of the 
higher note, and from this the frequency of all other notes 
of the scale, using the known ratios between them.

As if all these activities weren’t enough, Mersenne also 
composed some music of his own, but it is mostly forgot-
ten today. The Italian composer Ottorino Respighi (1879–
1936) included one of Mersenne’s songs in the second of 
three suites, Ancient Airs and Dances; the first of these 
suites includes a Gagliarda (a sixteenth- century Italian 
dance) by Vincenzo Galilei. The two pieces are a fitting 
tribute by a composer to two of his musician- scientist 
predecessors.

𝄓
The next major discovery in acoustics befell a scientist 
who is even less remembered today than Mersenne: Jo-
seph Sauveur (1653–1716). Born with severe speech and 
hearing impediments, Sauveur found his salvation in the 
sciences, particularly anatomy, botany, and mathematics. 
He made a living by being tutor to a number of French 
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royals, among them the Duke of Chartres. He then turned 
his skills to engineering, working on hydraulic projects 
and military fortifications. What started his interest in 
music is unclear, but it may have been triggered by his ac-
quaintance with one Étienne Loulié, who taught the duke 
music theory. The two became friends and in 1694 they 
wrote a book, The Science of Sound.

Sauveur was now totally absorbed in his newly- found 
world of music, but his hearing disability stood in the 
way. Undaunted, he surrounded himself by a group of 
musicians who would do the hearing for him. We have a 
colorful description of him by the biographer Bernard le 
Bovier de Fontenelle: “He had neither a voice nor hear-
ing, yet he could think only of music. He was reduced to 
borrowing the voice and the ear of someone else, and in 
return gave hitherto unknown demonstrations to musi-
cians.”7 The word acoustics (from the Greek akoustikos, 
able to be heard) was coined by him.

Sauveur was particularly interested in the relation be-
tween pitch and frequency. He devised various ways of 
dividing the octave into smaller steps, among them di-
visions into 43, 55, 301, 602, and even 3,010 parts. This 
brought upon him the scorn of his musician colleagues; 
such fine divisions, they claimed, could neither be heard 
nor played. They also disliked the equal- tuning method 
he had proposed (see chapter 6). Things came to a head in 
1699, when his assistants refused to cooperate with him 
any longer. He took his revenge two years later while pre-
senting a paper to the French Royal Academy of Sciences, 
ridiculing musicians as being close- minded and ignorant 
of scientific principles.

Sauveur’s knowledge of science served him well when 
he attempted to determine the frequencies of two organ 
pipes, using the phenomenon of beats—a slow undula-
tion in the intensity of sound emitted by two sources 



32 CHAPTER 3

slightly out of tune (figure 3.2).8 Sauveur, aided by his 
musical assistants, judged the two organ pipes to be a 
semitone apart—a frequency ratio of 16:15—while the 
beat rate was 6 per second. This led him to the set of 
equations

FIGU RE 3 . 2 .  Beats formed by two sine waves of frequencies 104 Hz (above) 
and 110 Hz (below). From “Beats (Acoustics)” at http:// en .wikipedia .org /wiki 
/Beat _ (acoustics).
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Solving these equations, Sauveur got x = 96, y = 90 vibra-
tions per second. You might call it music in the service of 
science.

But Sauveur made a second and perhaps even more im-
portant discovery. By placing small bits of paper at vari-
ous points along a vibrating string and observing their up 
and down motion, he concluded that various parts of the 
string vibrate independently of each other, as if the string 
were divided into separate segments. These vibrations, 
he soon realized, have frequencies that are integral mul-
tiples of the fundamental, lowest frequency of the full- 
length string, each producing its own note. Sauveur called 
them harmonic tones; they are the overtones that give the 
sound its characteristic color, or timbre.9 And therein lies 
the secret of musical harmony, for the ratios of all natural 
musical intervals derive from these harmonics: 2:1 for the 
octave, 3:2 for the fifth, and so on. Figure 3.3 shows the 
first sixteen harmonics of the low note C (64 cycles per 
second) both in musical notation and in absolute frequen-
cies and relative intervals of the notes. This sequence of 
notes is called the harmonic series; it plays as important 
a role in mathematics as it does in music, in the form of 
the infinite diverging series 1 + 1/2 + 1/3 + 1/4 + 1/5 + g.

There is a simple experiment that convincingly proves 
the presence of these harmonic overtones. Pluck a guitar 
string, then gently touch it with the tip of a pencil exactly 
at its midpoint: immediately you will hear a faint note 
one octave above the fundamental; this is the first over-
tone (or second harmonic) of the fundamental. It vibrates 
at twice the frequency and therefore at half the wave-
length of the fundamental; consequently, it has a node, 
a stationary, non- vibrating point at the string’s midpoint 
(figure 3.4). By touching the string at its midpoint, we 
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suppress the fundamental—and in fact all odd- numbered 
harmonics—but leave the even- numbered harmonics un-
affected, causing the sound to go up by one octave. Sim-
ilarly, touching the string at one- third of its length will 
filter out the fundamental and the second harmonic but 
leave unaffected the third harmonic, vibrating at three 
times the fundamental frequency; the corresponding note 
is a twelfth—an octave and a fifth—above the fundamen-
tal. We can repeat the experiment at the one- fourth point, 
one- fifth point, and so on, producing ever higher harmon-
ics. However, it takes a highly trained ear to hear these 
higher notes, as they get progressively fainter. No won-
der they remained obscured for so many years, quietly 
hiding in the shadow of their fundamental. Or perhaps 
they were regarded as “ghost tones” created solely in our 
minds. Sauveur showed them to be a physical reality.

𝄓
Sauveur was an almost exact contemporary of the 
two giants whose work would soon dominate much of 

FIGU RE 3 . 3 . The first sixteen harmonics of the low note C (64 Hz). The har-
monics marked by an asterisk correspond only approximately to the written 
notes.
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mathematics and science: Isaac Newton (1642–1727) 
and Gottfried Wilhelm Leibniz (1646–1716). In the 
decade 1666–1676 these two men, exact opposites in 
character and working at opposite sides of the English 
Channel, independently invented the differential and 
integral calculus, the single most important develop-
ment in mathematics since Euclid wrote his Elements 
two thousand years before. But this glorious invention 
had an ugly aftermath: the two protagonists, once on 
cordial if not exactly friendly terms, became embroiled 
in a bitter priority dispute that would engulf the en-
tire scientific community, pitting Newton’s supporters 
in England against Leibniz’s colleagues in continental 
Europe. The dispute would linger on long after the two 
were dead, and was in no small measure responsible for 
the stagnation of British mathematics for the next hun-
dred years.10 

The calculus at once changed the way scientists think 
of and formulate their work. It cracked open a vast num-
ber of problems that had resisted solution for centuries, 
ranging from algebra and geometry to physics and as-
tronomy. Foremost among these was the problem of the 
vibrating string, to which we turn in the next chapter.

FIGU RE 3 . 4 .  Modes of a vibrating string.
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NOTES

 1. This story, however, is of questionable authenticity, as is the legend 
about Galileo dropping objects of different weights from atop the Lean-
ing Tower of Pisa to show that they fall at the same rate. See Stillman 
Drake, Galileo at Work: His Scientific Biography (New York: Dover, 1978), 
pp. 19–21.

 2. We know today that this is true only for small amplitudes. For large 
swings the motion becomes nonlinear, resulting in a variable period of 
oscillations. 

 3. This ratio marks the midpoint of the octave, because ( ) ( )1
2

1
2

1
2# = . One 

would think that half an octave would make for a pleasant interval, but 
not so; it shows again that mathematical simplicity does not necessarily 
translate into musically agreeable sounds.

 4. “The Largest Known Primes—A Summary,” at http:// primes .utm .edu 
/largest .html.

 5. Mersenne primes have a fascinating history. Édouard Lucas proved in 
1876 that M127 is indeed prime, as Mersenne had claimed. This would 
remain the largest known prime number for seventy- five years, and 
the largest ever calculated by hand. In the same year Lucas discovered 
an error in Mersenne’s list. Without finding any actual factors, Lucas 
demonstrated that M67 is composite. No factors were found until a famous 
talk by Frank Nelson Cole at a meeting of the American Mathematical 
Society in 1903. Without saying a single word, Cole went to the black-
board and raised 2 to the 67th power, then subtracted 1. On the other 
half of the board he multiplied 193,707,721 by 761,838,257,287—all by 
hand—and got the same number, then returned to his seat to a standing 
ovation, again without uttering a word.

In 1883, Ivan Mikheevich Pervushin determined that M61 is prime, 
though Mersenne had claimed it was composite. This was the second- 
largest known prime number, and it remained so until 1911. A correct 
list of all Mersenne primes in the range 2 ≤ n ≤ 257 was completed and 
rigorously verified only about three centuries after Mersenne published 
his list. [This summary is based on David M. Burton, Elementary Num-
ber Theory, 4th ed. (New York: McGraw- Hill, 1997), pp. 206–207.] 

 6. Appeared in English translation by Roger E. Chapman (The Hague, 
Netherlands: Martinus Nijhoff, 1957). 

 7. “Éloge de Monsieur Sauveur,” Éloges des Académiciens de l’Académie 
Royale des Sciences morts depuis l’an 1699 (Paris, 1766), pp. 424–438. 

 8. The phenomenon can be explained by the trigonometric identity 

( ) ( ) .cos cos cos cosA B A B A B2 – 2
11

2 $+ = +  

When A and B have close numerical values, so will their average (A + B)/2, 
while (A – B)/2 will have a much smaller value. Thus when two sounds 
of nearly identical frequencies are superimposed, the combined effect is 
a new sound at nearly the same frequency, but with an amplitude that 

http://primes.utm.edu/largest.html
http://primes.utm.edu/largest.html
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slowly pulsates at a frequency equal to the difference between the origi-
nal frequencies. See figure 3.3.

 9. Strictly speaking, we must distinguish between overtones—higher vibra-
tions that accompany nearly every sound, whether musical or not—and 
harmonics, those overtones whose frequencies are integral multiples of 
the fundamental. Most musical instruments produce harmonic over-
tones, giving their sound a definite pitch. However, percussion instru-
ments usually generate nonharmonic overtones, making their pitch 
ill- defined or even nonexistent. Note that the first harmonic is the funda-
mental, the second harmonic is the first overtone, and so on, which makes 
their numbering a bit confusing. Sometimes overtones are referred to as 
upper partial tones, or simply upper partials.

 10. See Richard S. Westfall, Never at Rest: A Biography of Isaac Newton (New 
York: Cambridge University Press, 1980), chap. 14, and Jason Socrates 
Bardi, The Calculus Wars: Newton, Leibniz, and the Greatest Mathemati-
cal Clash of All Time (New York: Thunder’s Mouth Press, 2006).



C H A P T E R  4

The Great String 
Debate, 1730–1780

SOMETIME IN THE RE MOTE PAST,  perhaps five thousand 
years ago, an anonymous hunter noticed that, when 
he plucked the string of his hunting bow, it produced 
a sound of a definite pitch. Some twenty- five hundred 
years later, Pythagoras of Samos discovered a quanti-
tative relation between the length of a string and the 
pitch of its sound, marking the first attempt to relate 
music to mathematics. But a more complete understand-
ing of this relationship had to wait until the eighteenth 
century, when a quartet of distinguished mathema-
ticians took up the problem and tried to solve it with 
the help of the newly invented differential and integral  
calculus. 

The issue at stake was to determine the shape of a 
taut, flexible string after it is disturbed from its rest po-
sition by plucking, as with a guitar, or striking it with a 
hammer, as in a piano. In the former case, the string is 
given an initial displacement; in the latter case, an initial 
velocity. Taken together, these two comprise the initial 
conditions of the string; they should, in principle, deter-
mine the shape of the string at any future time. 

When we pluck a string, we momentarily disturb it 
from its state of rest by giving it the shape of a triangle, 
albeit a long and narrow one (its height would barely be 
noticeable to the eye). The instant we let go, this distur-
bance splits into two pulses that travel along the string 
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in opposite directions. The speed at which they move is 
determined by the physical parameters of the string—
the tension under which it is held, and the linear den-
sity (mass per unit length) of its material. The string, in 
effect, acts as a one- dimensional wave guide, a medium 
capable of transmitting signals along its length. 

Had the string been of infinite length, these two pulses 
would travel forever in opposite directions—assuming, 
of course, the absence of any frictional forces that would 
attenuate the motion. But an actual string has only a fi-
nite length; it is held tight at its endpoints, causing the 
two pulses to travel back and forth between the endpoints 
and recombine periodically to form a “standing wave,” an 
up- and- down motion in which every point of the string 
takes part. Such a periodic motion must  either be a pure 
sine wave vibrating at the string’s lowest, fundamental 
frequency, or a combination of many sine waves with 
frequencies 2, 3, 4, . . . , times the fundamental. These 
are the harmonics we met in the previous chapter; they 
divide the string into separate segments of wavelengths 
1/2, 1/3, 1/4, . . . , of the fundamental, each vibrating inde-
pendently of the others (see again figure 3.4 on page 35). 
The string’s actual motion is the sum total, or superposi-
tion, of all these waves. 

The dilemma that confronted the eighteenth- century 
mathematicians was this: how can the initial triangu-
lar shape of the plucked string, with its sharp corner at 
the top, evolve into the sum of many—perhaps infinitely 
many—sine waves piled on top of each other, each having 
a perfectly smooth shape? This question became the focal 
point of a heated debate in which nearly every mathema-
tician worth his mettle took part. Four names, in particu-
lar, stand out: Daniel Bernoulli, Leonhard Euler, Jean le 
Rond D’Alembert, and Joseph Louis Lagrange. Here is a 
brief outline of the cast: 
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Daniel Bernoulli (1700–1782) belonged to the second 
generation of a remarkable family of mathematicians and 
physicists, all hailing from the quiet university town of 
Basel in Switzerland. Extending over five generations, 
the family produced at least eight prominent members. 
Fiercely competitive and jealous of one another, the Ber-
noullis embroiled themselves in numerous fights over 
their many discoveries, fueled as much by sibling rival-
ries as by heated arguments over the technical details of 
their work. 

Daniel’s father, Johann (also known as Jeanne, 1667–
1748) and the latter’s older brother, Jakob (a.k.a. Jacques 
or James, 1654–1705) were the first of the dynasty to 
achieve mathematical prominence. Making full use of the 
newly invented calculus, the elder Bernoullis made im-
portant contributions to several areas of continuum me-
chanics, among them elasticity, fluid dynamics, and the 
theory of vibrations. Jakob also wrote a landmark trea-
tise on the theory of probability, Ars conjectandi (the art 
of conjecture, published posthumously in 1713). Daniel 
Bernoulli continued their work and in 1738 published his 
treatise Hydrodynamica, in which he formulated a famous 
law named after him that is fundamental to the theory 
of flight. He and his father often worked together on the 
same problems, sharing their insights and sparring over 
this detail or that. On one occasion Johann was so en-
raged at having to share with Daniel a prestigious award 
from the Paris Academy of Sciences that he expelled his 
son permanently from their home. Daniel was the only 
one of the clan who was equally at home in mathematical 
theory and in experimental physics, whereas the others 
were mathematicians first and foremost.1

Leonhard Euler (1707–1783) was by far the most prolific 
of the four. His enormous output, not yet fully published 
and estimated to fill some seventy volumes, covered every 



THE GREAT STRING DEBATE, 1730–1780 41 

aspect of mathematics and physics then known, includ-
ing number theory, mechanics and fluid dynamics, ce-
lestial mechanics, and the field of topology, of which he 
is considered the founder. There are more theorems and 
formulas named after Euler than of any other scientist. 
Two of his most famous are the equation V – E + F = 2, 
relating the number of vertices V, the number of edges 
E, and the number of faces F of any simple polyhedron (a 
solid with planar faces and having no holes), and his enig-
matic ei + 1 = 0, which unites in one short equation the 
five most important constants of mathematics. Two of the 
three symbols appearing in that formula, e and i, are also 
due to Euler, as is the modern notation f(x) for a function. 
His most influential work, the two- volume Introductio in 
analysin infinitorum (1748), is considered the foundation 
of modern mathematical analysis—in its broad sense, the 
study of the continuum.

Euler was born in Basel and was tutored by Johann 
Bernoulli before enrolling at the University of Basel in 
1720, graduating from it in just two years. In 1727 he 
moved to St. Petersburg, Russia, and stayed there for 
fourteen years before accepting an invitation by Fred-
erick the Great to join the Berlin Academy of Sciences. 
The king and his scholar, however, were not on the best of 
terms, Frederick having preferred a more flamboyant fig-
ure than the shy Euler. So in 1766, now nearly sixty years 
old, Euler moved back to Russia, where he stayed for the 
rest of his life. His final years were beset by tragedies: 
he lost his eyesight first in one eye, then the other; his 
house burned down and many of his writings were lost; 
and if that were not enough, his wife died five years later. 
The irrepressible Euler married again and continued his 
work undaunted by his blindness. He was helped by an 
enormous power of concentration that enabled him to do 
the most complex calculations entirely in his mind. In life 
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Euler was modest and generous in giving credit to others 
for their work, a trait that set him apart from most of his 
colleagues. 

Jean le Rond D’Alembert (1717–1783) was the illegiti-
mate child of a Parisian glazier; the newborn was found 
abandoned at the church of St. Jean- le- Rond, and when 
he grew up, he adopted that name. Like most mathe-
matical physicists at the time, he worked on a wide 
range of subjects in continuum mechanics and celestial 
mechanics. In 1743 D’Alembert published his Traité de 
dynamique, in which he formulated a principle accord-
ing to which any dynamic system under the influence 
of external forces can be regarded as a system in static 
equilibrium; he came to this idea by rewriting Newton’s 
second law of motion from its familiar form F = ma to 
the equivalent form F – ma = 0 and interpreting it as 
if the net sum of the forces acting on the system was 
zero. This enabled him to tackle many hitherto unsolved 
problems, ranging from fluid dynamics to the precession 
of Earth’s equinoxes.

D’Alembert served as editor for the great encyclopedia 
of Denis Diderot, a work that was intended to encompass 
the entirety of human knowledge at the time; but the 
Catholic Church apparently did not approve of this work, 
perhaps because of its rational, nonspiritual tenor, so he 
relinquished his role in it. D’Alembert managed to gain 
the favors of the French monarch Louis XV and later 
of the Prussian ruler Frederick II and the Russian em-
press Catherine II. In character he was a somewhat ar-
rogant type, having an inflated sense of self- importance 
that was no doubt bolstered by his connections to those 
in power.

Joseph Louis, Comte de Lagrange (1736–1813) was 
the youngest of the four; he was still relatively unknown 
when he joined the debate over the vibrating string. His 
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French name notwithstanding, he was born and raised 
in Turin, Italy, the youngest of eleven children and the 
only one to survive to adulthood. He showed an early in-
terest in mathematics and became professor at the Royal 
Artillery School of Turin at the young age of nineteen. 
In 1766 he moved to Germany to become Euler’s succes-
sor as director of the Berlin Academy of Sciences. In 1794 
he was appointed professor at the prestigious École Poly-
technique of Paris. Lagrange’s later years were clouded 
by bouts of depression, and his productivity declined be-
fore he reached the age of fifty. He then turned his at-
tention to administrative matters and in 1793, following 
the French Revolution, was appointed to head the com-
mission that introduced to the world the metric system of 
weights and measures—one of France’s greatest services 
to the scientific community.

Lagrange’s chief work was in differential equations and 
mechanics—discrete and continuous—but he also made 
significant contributions to algebra and number theory. 
He reformulated Newton’s three laws of motion and cast 
them in the language of differential equations and the 
calculus of variations, while shifting the focus from the 
forces that act on a system to its energy.2 Lagrange intro-
duced the quantity T – U (the difference between the ki-
netic and potential energy of the system) and made it the 
central quantity of mechanics; it is called the Lagrangian. 
This enabled him to formulate the laws of mechanics in 
a completely general way, independent of any particular 
choice of a coordinate system. In effect, Lagrange turned 
Newtonian mechanics into a branch of pure mathematics; 
his treatise Mécanique analytique (1788), which he began 
writing at the age of nineteen and completed when he was 
fifty- two, was a milestone in theoretical physics. Written 
in a style more fitting a work in abstract mathematics, it 
did not have a single illustration. 
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𝄓
These four, the cream of the crop of European mathe-
matics in the eighteenth century, now flooded the aca-
demic community with a barrage of letters, memoirs, 
 papers, and addresses, all ostensibly on the problem of 
the vibrating string. The protagonists often switched 
sides, agreeing on some technical detail at one moment, 
only to go after each other at the next. And in contrast 
to the modern, more matter- of- fact style of scholarly dis-
course, the exchanges were peppered with personal barbs 
and polemics that make one wonder how these gentlemen 
found the time and energy to engage in such vanity. 

The first to enter the debate was Daniel Bernoulli. As 
early as 1732 he recognized that, in addition to the string’s 
fundamental frequency, many other pure tones, with fre-
quencies 2, 3, 4, . . . , times that of the fundamental, are 
present in the string’s motion; he even speculated that 
there might be infinitely many of them. In 1740 he wrote:

A taut musical string can produce its isochronous 
tremblings in many ways and even according to theory 
infinitely many. . . . The first and most natural mode 
occurs when the string produces a single arch; then it 
makes the slowest oscillations and gives out the deep-
est of all possible tones, fundamental to all the rest. 
The next mode demands that the string produce two 
arches and then the oscillations are twice as fast, giv-
ing out the octave of the fundamental sound.3

Note how Bernoulli phrased this problem in musical 
terminology: “musical string,” “deepest tone,” and “oc-
tave.” He clearly had his hands—and his ears—fully 
engaged with the actual, physical string, a point he was 
quick to contrast with the overly abstract, theoretical ap-
proach of Euler and D’Alembert. In his memoir Reflections 
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and Enlightenments on the New Vibrations of Strings 
(1747–48), Bernoulli says, “It seems to me that giving at-
tention to the nature of the vibrations of strings suffices 
to foresee without any calculation all that these great ge-
ometers [D’Alembert and Euler] have found by the most 
difficult and abstract calculations that the analytic mind 
has yet conceived.”4 In 1753 he rejoined the debate, point-
ing out that the different vibrational modes can coexist 
simultaneously and independently of each other; he had 
thus recognized the principle of superposition. 

𝄓
Daniel Bernoulli may have ridiculed his colleagues’ ex-
cessive mathematical approach to the problem, but math-
ematics was indeed needed to solve it. In 1727 Johann 
Bernoulli (Daniel’s father) had investigated the vibrating 
string by treating it as a “string of beads” in which n point 
masses, each bound to its two immediate neighbors by 
the force of tension, are set in motion. This approxima-
tion to the real string leads to a system of n ordinary dif-
ferential equations that must be solved simultaneously, a 
rather tedious process. In 1746 D’Alembert reformulated 
the problem in terms of a single partial differential equa-
tion, known since as the one- dimensional wave equation. 
He did this by letting n grow to infinity while reducing 
each mass, and the distance between adjacent masses, 
to zero. This transition from a discrete to a continuous 
system was a huge step forward in developing the mathe-
matical tools needed to deal with the continuum.5

In his 1746 paper, D’Alembert found a solution of the 
wave equation that represents two waves traveling from 
the initial disturbance in opposite directions. The shape 
of these waves is determined by the initial conditions of 
the string—the displacement and velocity of each of its 
points at t = 0—but the disturbance itself can have an 
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arbitrary shape. This immediately stirred up a contro-
versy: how can the plucked string’s initial triangular 
shape, consisting of two straight line segments joined to-
gether at a corner (a point at which the slope of the curve 
is undefined), be a solution of an equation whose very na-
ture assumes that the string has everywhere a smooth 
shape? This soon shifted the debate to the wider issue of 
what exactly is the definition of a function. Can it include 
sharp corners, points where the slope abruptly changes 
from one value to another? Must its graph even be contin-
uous? Today, of course, the concept of a function is well es-
tablished, but in the eighteenth century it was still poorly 
understood and open to different interpretations.

Bernoulli and Euler went around these questions by 
proposing a different kind of solution, one that represents 
the sum total of all those pure sine waves that take part in 
the string’s motion. This avoided the sharp corner issue al-
together, and it was also more in tune with the physical na-
ture of the vibrations: after all, when you pluck a guitar you 
hear a sound, but you don’t see a wave propagating down 
the string. So the debate now shifted to the question of how 
could these two radically different  realities—D’Alembert’s 
propagating waves versus Bernoulli’s sinusoidal vibra-
tions—represent solutions of the very same equation. We 
need not go into the technical details of the debate, which 
can wear down the patience of a modern reader; a few snip-
pets from the exchange should suffice:

D’Alembert, always conscious of his status as edi-
tor and principal mathematical authority of the French 
 Encyclopedia, wrote in his article “Vibration of chords” 
(1745): “I believe I am the first to have solved the problem 
. . . in a general way; Mr. Euler solved it after me, in using 
almost exactly the same method, with this difference 
only, that his method seems a little longer.”6 Bernoulli, 
in a letter to Euler (1750), wrote: “I cannot grasp what 
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Mr. D’Alembert intends to say. . . . He always stays in the 
abstract and never gives a specific example. I should like 
to know how he can produce from a string whose funda-
mental sound [frequency] is 1 any other sound than 1, 
namely 2, 3, 4 etc. [times the fundamental frequency]. He 
has tried to ape you; but in his production one sees his 
taste and little reality.”7

Even the usually courteous Euler eventually lost his 
patience with D’Alembert. In a 1757 letter to French 
mathematician Pierre Maupertuis, he wrote: 

Mr. D’Alembert causes us much annoyance with his 
disputes. . . . He points out that he is more than ever 
convinced of his opinion; that he will show also that he 
is right in his old disputes with Mr. [Daniel] Bernoulli 
on hydrodynamics; though everyone ought to agree 
that experiments have decided for Mr. Bernoulli. If 
Mr. D’Alembert had the candor of Mr. Clairaut [Alexis 
Clairaut, a French mathematician who worked on dif-
ferential equations], he would not hesitate to retreat. 
But if as things stand the [French] Academy [of Sci-
ences] wished to lend its memoirs to his view, the Math-
ematical Class [section] would be filled for some years 
only with disputes on vibrating strings leading to abso-
lutely nothing, and therefore in the last  assembly . . . it 
was found good to suppress the memoir of Mr. D’Alem-
bert on this subject. He demanded also that I put in 
new confessions of a number of things I had robbed 
from him. But my patience is at an end, and I have let 
it be known to him that I will do nothing, that he may 
himself publish his claims wherever he will, and I will 
do nothing to prevent it. He will have enough to fill up 
the articles on Claims in the Encyclopedia. 

And later: “Mr. D’Alembert is not bothering me any 
more, and I have taken the firm resolution not to cross 
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swords with him again, no matter what he publishes 
against me.”8 

Apparently the rift between D’Alembert and the other 
“geometers,” as he called his colleagues, was not entirely 
academic. They may have tried to court favor with him 
because of his connections to the Prussian king Frederick 
the Great and his role as director of the Berlin Academy 
of Sciences. But when Euler finally broke up with D’Alem-
bert, the latter retaliated by prevailing on Frederick to 
replace Euler with Lagrange as the leading mathemati-
cian at the Academy. 

Lagrange joined his colleagues late in the debate, and, 
despite his growing reputation as a mathematical physi-
cist, he added little to what had already been found by the 
others. On several occasions his mathematical reasoning 
lacked credibility, in particular his passage from the dis-
crete to the continuous string, where he used some ques-
tionable logic. He covered it up with a barrage of words 
(“almost complete nonsense,” to quote mathematical his-
torian Morris Kline).9 But we may perhaps forgive him, 
for his attention was already focused on his magnum 
opus, Mécanique analytique.

𝄓
In its intensity and in the colorful personalities of the 
protagonists who took part in it, the string debate of the 
eighteenth century foreshadows the debate over the na-
ture of quantum mechanics (QM) in the 1920s. Much like 
the string controversy, the QM debate centered on the 
question of whether nature, at the subatomic level, is dis-
crete or continuous. Should an electron be regarded as a 
material particle or as a wave—or perhaps as both? The 
wave– particle duality engulfed nearly every theoretical 
physicist worth his mettle, pitting Werner Heisenberg’s 
discrete matrix mechanics against Erwin Schrödinger’s 
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continuum- based wave equation (which itself may have 
been inspired by a musical analogy, Louis de Broglie’s 
picture of electrons orbiting the atom nucleus in waves of 
discrete frequencies like those of a violin string).

It is also interesting to note that several of the pioneers 
of quantum theory practiced music for much of their lives: 
Albert Einstein and his iconic violin became the stuff of 
legend (it is less known that he also played the piano), Max 
Planck and Paul Ehrenfest were accomplished  pianists, 
and Werner Heisenberg had at first considered pursu-
ing a musical career before settling on theoretical phys-
ics. This is in marked contrast to the eighteenth- century 
mathematicians who endlessly debated their beloved vi-
brating string: with perhaps the exception of Euler, none 
of them had a lifelong interest in music as an art. They 
practiced what we may call “mathematical music,” car-
rying the Pythagorean obsession with numerical ratios 
to new heights. Euler, at the young age of twenty- three, 
wrote an extensive treatise on music theory, Tentamen 
novae theoriae musicae (1730), in which he attempted to 
assign a numerical scale to different chords according to 
their degree of “pleasantness.” It was an ambitious un-
dertaking, but to quote his assistant and future son- in- 
law Nicolas Fuss, “it had no great success, as it contained 
too much geometry for musicians, and too much music for 
geometers.”10

In the end, the great string debate did not completely 
settle the problem around which it evolved—to determine 
the shape of the vibrating string and express it in a math-
ematical formula. Although the four protagonists came 
close to solving it, the definitive solution had to wait an-
other half century for another Frenchman, whom we will 
meet in the next chapter.

Nevertheless, the debate has had a significant im-
pact on the development of post- calculus mathematics: it 
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spearheaded the techniques needed to deal with the con-
tinuum, of which the vibrating string was but the sim-
plest example. It served as a jumping board to the study 
of numerous other continuous systems, from strings with 
nonuniform mass distribution to vibrating beams, mem-
branes, bells, and air columns. It launched, in short, what 
we may call theoretical acoustics. But did it have any in-
fluence on music? The Pythagoreans may have had their 
dream of subjecting music to mathematical rules, but 
music followed its own path, staying—with some notable 
exceptions—immune to influences by mathematics, its 
great intellectual counterpart. The much- hailed affinity 
between the two was largely a one- way affair. 

NOTES

 1. More on the Bernoullis, including a hypothetical meeting between Jo-
hann Bernoulli and Johann Sebastian Bach, can be found in Eli Maor, 
e: The Story of a Number (Princeton, N.J.: Princeton University Press, 
1994), chap. 11.

 2. A basic problem in calculus is to find a value, or values, of x that maxi-
mizes or minimizes a given function f(x). The calculus of variations gen-
eralizes this problem to finding a function f that maximizes or minimizes 
the value of a definite integral, specifically ( , , )f x y y dx
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l# , where y dx
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 3. Quoted in Kline, Mathematical Thought from Ancient to Modern Times, 

vol. 2, p. 508.
 4. This and subsequent quotations from the exchanges between the four pro-

tagonists are from Truesdell, The Rational Mechanics of Flexible or Elas-
tic Bodies: 1638–1788, part III, page 255.

 5. The wave equation applies Newton’s second law of motion, F = ma, to two 
quantities: the acceleration of each point along the string as it moves 
up and down, and the rate of change of the string’s slope between two 
neighboring points, which in turn determines the vertical force acting on 
them. Expressed mathematically, the wave equation is x
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u = u(x, t) is the vertical displacement of a point on the string located at 
a distance x from one endpoint at time t. The symbols x
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2  are the 
second derivatives of u with respect to x and t, respectively (hence the ex-
ponents 2 in these symbols). The constant c represents the speed at which 
a disturbance propagates along the string. Its value depends on the ten-
sion T at which the string is held and on its linear density m; specifically, 
c T= m . The wave equation also governs many other phenomena, among 
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them the torsional oscillations of an elastic rod and the vibrations of the 
air column in an organ pipe.

The principle of superposition mentioned earlier follows from the fact 
that the wave equation is linear—it involves only the first power of the 
variables and their derivatives. In a linear equation, the sum of two or 
more solutions is again a solution.

 6. Truesdell, p. 245, n3.
 7. Ibid., p. 254, n4. 
 8. Ibid., pp. 273–274.
 9. Kline, vol. 2, p. 512. As an example of Lagrange’s questionable logic, he 

replaced sin n
p
2
r  by n

p
2
r  when n = ∞ (it was common in the eighteenth cen-

tury to write n = ∞ for what we would write today as n → ∞), ignoring the 
fact that p might be of the same order as n.

 10. Quoted by David Brewster in Letters of Euler, vol. 1 (New York, 1872), 
p. 26. Robert Edoard Moritz, On Mathematics and Mathematicians 
(Memorabilia Mathematica) (New York: Dover, 1958), p. 156.

For an extensive account of Euler’s musical interests, see Peter 
Pesic, “Euler’s Musical Mathematics,” on the web at www .academia .edu 
/3771204 /Eulers _musical _mathematics.

http://www.academia.edu/3771204/Eulers_musical_mathematics
http://www.academia.edu/3771204/Eulers_musical_mathematics
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The Slinky

INVE NTE D BY NAVAl E NGINE E R  Richard Thompson 
James in the early 1940s as a toy, the Slinky contin-
ues to enchant youngsters and adults in its grace-
ful bouncing off a bookshelf or its effortless hopping 
down a staircase (figure B.1). It was first demon-
strated at Gimbel’s department store in Philadelphia 
in November 1945, and was an instant success (the 
entire stock of 400 Slinkies, each priced at $1, sold 
out in ninety minutes). Richard’s wife Betty James 
coined the name Slinky; it is defined in Webster’s 
Dictionary as an adjective: “Slinky: characterized 
by stealthily quiet, sleek and sinuous movement,” 
but it soon became a noun and a household name. In 
2002 the Commonwealth of Pennsylvania honored 
the Slinky by declaring it the state’s official toy. It 
even earned a song, It’s Slinky!, with lyrics by Homer 
 Fesperman and music by Charles Weagley.1 

But the Slinky is much more than just a toy. Many 
of the principles of acoustics can be demonstrated 
with it. On a smooth floor, tie one end of your Slinky 
to the leg of a table or some other heavy object, hold 
the other end in your hand, and move back until the 
Slinky stretches to a dozen feet or so. Then, still hold-
ing one end in your hand, give it a slow to- and- fro 
motion at right angles to the Slinky. By synchroniz-
ing your motion with the Slinky’s natural frequency, 
it will assume the shape of half a sine wave. If you 
move your hand at twice that frequency, the shape 
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will be that of a full sine wave, with its two identical 
but opposite arcs moving back and forth in sync. You 
can even induce the third and fourth harmonics by 
carefully timing your hand’s motion—a convincing 
demonstration that the harmonic overtones of a vi-
brating string do indeed exist. This represents Dan-
iel Bernoulli and Euler’s “standing wave” solution of 
the wave equation discussed in chapter 4. 

But there is more. With the Slinky’s end still held 
in your hand, give it a single abrupt jerk, again per-
pendicularly to the Slinky’s length. The disturbance 
will move down the Slinky until it reaches the other, 
fixed end, where it is flipped over and reflected back 
to your hand. This illustrates D’Alembert’s solution 
of the wave equation. You can even control the speed 
at which the disturbance is propagated by stretch-
ing or slackening the Slinky and thereby increasing 
or decreasing the tension at which it is held.

FIGU RE B .1 .  Slinky.
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In the two demonstrations just mentioned, the 
disturbance was perpendicular to the direction 
of propagation, generating a transverse wave. But 
sound waves propagate through the air as longitudi-
nal waves in which the disturbance (rapid compres-
sions and rarefactions of the air) takes place along 
the direction of propagation. This too can be shown 
on your Slinky: with your hand still holding one end, 
give the Slinky a sudden jerk along its own direc-
tion. You will see a compression wave propagating 
down the Slinky until it reaches the fixed end, where 
it is reflected back as an echo.

Had the Slinky been invented two hundred years 
earlier, perhaps the great string debate would have 
never happened. The Slinky is a low- frequency model 
of an actual string, allowing disturbances to propa-
gate along it at slow speeds and making it easy to 
follow them visually. In an actual string the frequen-
cies are much too high and the disturbances much 
too small to be visible. Indeed, it was the ear, not the 
eye, that first discovered these higher vibrations.

NOTE

 1. This paragraph is based on the article “Slinky” at http:// en 
 .wikipedia .org /wiki /Slinky. See also the article “The Invention of  
the Slinky” by Zachary Crockett in Priceonomics at https: // 
 priceonomics .com /the -  invention -  of -  the -  slinky/.

http://en.wikipedia.org/wiki/Slinky
http://en.wikipedia.org/wiki/Slinky
https://priceonomics.com/the-invention-of-the-slinky/
https://priceonomics.com/the-invention-of-the-slinky/
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A Most Precious Gift

WHAT DISTINGUISHES A MUSICAl SOUND  —a tone—from 
noise? The answer depends on whom you ask—and when. 
Until about 1900, there was a nearly unanimous agree-
ment: a tone is generated by periodic vibrations that re-
peat again and again with precise regularity, producing a 
sound with a definite, recognizable pitch (see figure 5.4). 
Anything else is noise, characterized by nonperiodic, ran-
dom vibrations. But in post- classical music this distinc-
tion has all but disappeared. French composer Erik Satie 
(1866–1925) wrote a piece called Parade in which a me-
chanical typewriter and a steam whistle play prominent 
roles. Not to be outdone, American avant- garde composer 
John Cage (1912–1992) in 1959 composed his Sounds of 
Venice, scored for a piano, a slab of marble, a Venetian 
broom, a birdcage (a play on Cage’s name?) of canaries, 
an amplified Slinky, and a few other bizarre instruments. 
Of course, composers had used “nonmusical” devices for 
hundreds of years before—most percussion instruments 
lack a sense of pitch—but these were mainly employed 
to create special effects and were not regarded as bona 
fide instruments. But as American composer Cole Porter 
(1891–1964) is quoted to have said, in today’s noisy world 
“anything goes.”

The simplest musical sound is a sine wave, y = a sin t; 
here t stands for time, a is the amplitude, the maximum 
deviation of the vibrations to either side, and  (Greek 
omega) is the angular frequency, a quantity that is pro-
portional to the actual frequency f (the number of cycles 
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per second) through the formula  = 2f. The period T, the 
time it takes the vibrations to go through one full cycle, 
is the reciprocal of the frequency, so T = 1/f = 2/. The 
note A above middle C, for example, has a frequency of 
440 cycles per second (440 cps or Hz), so its period is 1/440 
seconds. This simplest of all vibrations is known by three 
different names, depending on who is using it: mathema-
ticians call it a sine function or sine wave, physicists know 
it as simple harmonic motion (SHM), and musicians refer 
to it as a simple or pure tone. Figure 5.1 shows the graph 
of the sine function over one complete cycle.

Like any sound, a musical tone must be generated 
by some vibrating body: a tuning fork, a guitar string, 
or the air column in an organ pipe. The vibrations are 
then transmitted through the air as pressure waves: a 
succession of compressions and rarefactions of the air 
molecules. When they arrive at our ears, they are con-
verted to nerve pulses that ultimately reach our brain, 
where they leave an aural impression, a note with a defi-
nite pitch. To be audible, however, the vibrations must 
be within certain frequency limits. The lower end of this 
limit is about 20 Hz; anything below this threshold is 
infrasound and inaudible. At the opposite end, the high-
est frequency a young person can hear is about 20,000 
Hz, but this can go down to 10,000 (a full octave) or even 
lower with age. All sounds above this upper threshold 
are categorized as ultrasound and are again inaudible 
to the human ear, although some animals like bats can 
hear them perfectly well.

The frequency range from 20 to 20,000 Hz encom-
passes about ten octaves. To put this in perspective, a 
grand piano has a range of just over seven octaves. Our 
eyes, by contrast, can see less than two “octaves” of the 
electromagnetic spectrum, from about 4,000 to 7,000 
angstroms (one angstrom = one ten- billionth of a meter 
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= 10–10 m). This corresponds to a frequency range from 
about 750 to 430 terahertz (1 terahertz = one trillion 
hertz = 1012 Hz). But the ear is superior to the eye in yet 
another, and perhaps even more significant way: while 
the eye can perceive only one wavelength, or color, at a 
time (for example, when yellow and blue colors are mixed, 
the eye sees green), the ear can hear many frequencies at 
once and perceive them as separate, distinct tones. This 
ability to resolve a sound into its pure- tone components 
makes the ear an effective acoustic prism, akin to an op-
tical prism that splits white light into its rainbow colors. 
Without this gift we would not be able to distinguish one 
musical instrument from another; they would all sound 
the same, depriving us of the quality of musical color, or 
timbre, that makes a trumpet sound different from a vio-
lin, even when they play the same note.

From a musical standpoint, a pure tone sounds rather 
dull. The only acoustic (as opposed to electronic) instru-
ment that comes close to emitting a pure tone is a tuning 
fork—and an orchestra made up of a number of tuning 
forks, each with its own frequency, would not likely be 
attracting large audiences. Fortunately, most musical in-
struments emit compound tones, each having a lowest, fun-
damental note and a series of overtones with frequencies 

FIGU RE 5 .1 .  Graph of y = sin x.
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1, 2, 3, . . . , times that of the fundamental (the excep-
tion is percussion instruments, whose overtones are non-
harmonic). These harmonic overtones, each with its own 
amplitude, comprise the acoustic spectrum of the sound. 
Figure 5.2 compares the acoustic spectra of a flute and a 
trumpet; the flute has relatively few harmonics, giving it 
a mellow, soft sound, while the many higher harmonics of 
the trumpet give its sound its  dazzling brilliance.

𝄓
We must digress here for a moment into trigonometry. We 
mentioned earlier that the sine wave y = a sin t has a 
period 2/. A periodic function in general is any function 
y = g(x) that fulfills the condition g(x + P) = g(x) for all 
values of x at which the function is defined. This means 
that the graph of g(x) repeats itself every P units along 
the x- axis. The smallest value of P for which this is true 
is the period, or wavelength, of the function—the distance 
between two adjacent peaks or troughs (clearly, increas-
ing x by any multiple of P will again cause the graph to 
repeat, which is why we insist on the smallest value of 
P). The frequency—the rate at which the graph repeats 
itself—is the reciprocal of the period: f = 1/P.

FIGU RE 5 . 2 . Acoustic spectra of flute and trumpet.
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We know from trigonometry that the functions sin x, 
sin 2x, sin 3x . . . ,  sin nx, . . . , have periods 2, 2/2, 
2/3, . . . , 2/n, . . . , respectively, and therefore frequen-
cies 1/2, 2/2/2, 3/2, . . . , n/2, . . . ,—all multiples of 
1/2. If we now form a linear combination of these func-
tions, that is, multiply each by a constant and sum up the 
terms, the resulting expression

sin sin sina x a x a nx2 n21 f f+ + + +

will again be a periodic function with period 2, but its 
graph will be quite different from that of a simple sine wave 
(figure 5.3 shows this for the function sin x + 1/2 sin 2x). 
And since we can assign the coefficients in this expres-
sion any arbitrary values—and add as many terms as we 
please—we can create a vast number of different periodic 
functions, each with its own wave profile, each represent-
ing a musical tone with a definite pitch and acoustic spec-
trum. Figure 5.4 shows one such wave profile.

The eminent French mathematician and physicist Jean 
Baptiste Joseph Fourier (1768–1830), in his seminal trea-
tise The Theory of Heat (1822), showed that the converse 
of this statement is also true: every periodic function f(x) 
with period 2, subject to certain restrictive conditions, is 
the sum of an infinite number of sine and cosine waves, 
whose periods are 2, 2/2, 2/3, . . ., and frequencies 
1/2, 2/2/2, 3/2, . . . . This infinite sum is called a trig-
onometric or Fourier series; we say that f(x) is represented 
by its Fourier series, and we write this as

( ) / ( )cos sinf x a a nx b nx2 n n
n

0
1

= + +
3

=
/

(the reason why the constant term is a0/2 is a technical 
one and need not concern us here). The coefficients an and 
bn can be computed for any particular function f(x) by 
using a pair of formulas discovered by Euler as early as 
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1750–1751 and named after him. Indeed, the four protag-
onists of the great string debate came close to discover-
ing Fourier’s theorem; what stood in their way was their 
failure to recognize that infinitely many sine and cosine 
terms can converge to the graph of a function even if that 
graph has sharp corners, as with the plucked string. Fig-
ure 5.5 shows the graph of f(x) = x, f(–) = f() = 0, consid-
ered as a periodic function over the interval – < x < ; 
its Fourier series is ( )2 –sin sin sinx x x

1
2

2 3
3 f+ + . Figure 5.6 

shows the sum of the first four terms of the series; we see 
how the terms, when added, approach the graph of f(x) = x 
near the endpoints of its interval.1

The significance of Fourier’s theorem to music cannot 
be overstated: since every periodic vibration produces a 
musical sound (provided, of course, that it lies within the 
audible frequency range), it can be broken down into its 
harmonic components, and this decomposition is unique; 
that is, every tone has one, and only one, acoustic spec-
trum, its harmonic fingerprint. The overtones comprising 
a musical tone thus play a role somewhat similar to that 
of the prime numbers in number theory (see page 27): 

FIGU RE 5 . 4 .  Wave profile of a musical tone.
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they are the elementary building blocks from which all 
sound is made.

𝄓
Fourier embodied the best in a long French tradition of 
training great scientists who also served their country 
in the military and in public administration. Born in 
Auxerre in north- central France, he was admitted to a 
military school run by the Benedictine order, where he 
showed an early talent for mathematics. Young Fourier 
wished to become an artillery officer, but because he 
came from a lower social class, he had to settle for the job 
of mathematics instructor at the military school. He ac-
tively supported the French Revolution in 1789 and later 
was arrested for defending victims of the Reign of Ter-
ror, barely avoiding the guillotine. Eventually he was re-
warded for his activities and in 1795 was offered a profes-
sorship at the prestigious École Polytechnique in Paris, 
where  Lagrange was also teaching. 

When in 1798 Emperor Napoleon Bonaparte launched 
his Egyptian campaign, he added to his staff a number 
of savants, distinguished scholars in various fields who 
would crisscross the ancient country and hunt for its 

FIGU RE 5 . 5 .  Graph of f(x) = x, – < x < , f(–) = f() = 0, considered as a 
periodic function over the interval (–, ).
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archeological treasures. Among them was Fourier, who 
was appointed governor of southern Egypt and put in 
charge of the French Army’s workshops. After Napoleon’s 
defeat by the British in 1801, Fourier returned to France, 
where he became the governor of the district of Grenoble. 
Among his duties was the supervision of road construc-
tion and drainage projects, all of which he executed with 
great ability. As if that was not enough to keep him busy, 
he was appointed secretary of the Institut d’Egypte, and 
in 1809 completed a major work on ancient Egypt, Préface 
historique.

One often marvels at the enormous range of activities 
of many eighteenth-  and nineteenth- century scholars. 
At the very same time that Fourier was occupied with 
his administrative duties, he was deeply engaged in his 
mathematical researches, covering fields as diverse as 
the theory of equations and mathematical physics. When 
only sixteen he found a new proof of René Descartes’s rule 
of signs about the number of positive and negative roots 
of a polynomial. He was working on a book entitled Anal-
yse des équations déterminées, in which he anticipated 

FIGU RE 5 .6 .  First four partial sums of the Fourier series of f(x) = x, – < x < .
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linear programming, when he died unexpectedly after a 
fall down a flight of stairs. It is ironic that Fourier dis-
covered the theorem for which he is best remembered as 
a result of his work on the propagation of heat in solids, 
rather than in connection with acoustics, as one might 
have expected.2

𝄓
Whereas Fourier’s theorem, by itself, is a purely mathe-
matical concept, it is a truly remarkable fact that our ears 
are capable of separating a compound tone into its pure- 
tone components according to Fourier’s theorem. This is 
known as Ohm’s acoustic law; it was formulated in 1843 
by German physicist Georg Simon Ohm (1789–1854), 
who is better known for his famous law in electricity. Our 
ability to resolve a musical sound into its individual pure- 
tone components—and more generally, to hear as sep-
arate notes any combination of individual notes played 
simultaneously—is one of the most amazing gifts nature 
has bestowed on us. The entire theory of musical har-
mony rests on it, enabling us to hear a triad of notes such 
as C–E–G as individual notes even when they are played 
together in a C major chord. The sense of vision does not 
have this ability: as already mentioned, when two colors 
are being mixed, we see only a single third color. There is 
no such thing as an optical chord.

𝄓
We are indebted to one of the greatest scientists of the 
nineteenth century for giving us a satisfactory explana-
tion of this gift: Hermann Ludwig Ferdinand von Helm-
holtz (1821–1894). Helmholtz was perhaps the last truly 
universal scientist, a man of enormous intellectual ca-
pacity who did groundbreaking research in mathematics, 
physics, and physiology and wrote two landmark treatises 
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that have not lost their relevance even today: Handbook of 
Physiological Optics (in three volumes, 1856) and On the 
Sensations of Tone as a Physiological Basis for the Theory 
of Music (1863; listed in the bibliography). Helmholtz was 
equally at home as a theorist and as an experimentalist, 
a trait that was already rare at his time and is almost 
unknown in today’s era of specialization. He was also a 
skilled piano player and was thoroughly familiar with 
music theory. To cap it all, Helmholtz was a superb ex-
positor of science; his book Popular Lectures on Scientific 
Subjects (in two series, 1873 and 1881) is a model of clarity 
and covers a wide range of topics, including an extensive 
chapter on the physiological causes of harmony.3

Helmholtz was born in Potsdam, Prussia, to a father 
who was a gymnasium (high school) principal and who 
wanted his son to study medicine. So the young Helm-
holtz began his career as a surgeon in the Prussian Army 
before being appointed professor of physiology at the Uni-
versity of Königsberg in 1849. His first major contribution 
to the field came in 1851 when he invented the ophthalmo-
scope, a tool that allowed a physician to peer into the eye’s 
interior. He also expanded Thomas Young’s theory on the 
three basic colors of vision. Another early achievement 
came in 1852 when he was the first to measure the speed 
of propagation of nerve impulses to the brain; he found it 
to be between about 25 and 38 m/sec, much slower than 
what had been believed before. 

Helmholtz then turned his attention to the anatomy 
of the ear. His experiments in this area led him to con-
clude that thousands of tiny resonating fibers reside in 
the  cochlea, the inner spiral from which sound waves are 
transmitted as nerve impulses to the brain. These fibers 
get progressively smaller as we go further into the co-
chlea’s spiral, and therefore respond to different frequen-
cies—the smaller the resonator, the higher the frequency 
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to which it answers. This spatial distribution of frequen-
cies means that the ear, in effect, performs a Fourier 
analysis on the sounds that reach it. Helmholtz’s theory 
of aural perception has undergone several revisions since 
he proposed it, yet the exact process of what happens to 
the aural nerve impulses as they reach the brain is still 
not completely understood even today. 

𝄓
Around 1855 Helmholtz became interested in what is 
known as combination tones, a phenomenon first dis-
covered in 1745 by the German organist, composer, and 
theorist Georg Andreas Sorge (1703–1778) and then 
rediscovered in 1754 by the famous violinist and com-
poser Giuseppe Tartini (1692–1770), after whom they 
are named. Tartini noticed that when two loud tones are 
sounded together, a third, much lower tone can be faintly 
heard, whose pitch corresponds to the difference of fre-
quencies between the original tones. This “ghost tone” 
was a mystery at the time, as it could not be attributed to 
the overtones of the original sounds.

Helmholtz explained this phenomenon as due to a slight 
nonlinearity in the elastic properties of the eardrum. Had 
the drum’s response been strictly linear (y = kx), then 
any pure tone impinging on it would merely be amplified 
without affecting its frequency. But suppose the response 
has a small nonlinear term, y = kx2. Let two pure tones of 
equal amplitudes a (we may take them as a = 1) but dif-
ferent angular frequencies  and  fall on the eardrum, 
so the combined input is x = sin t + sin t and the out-
put y = k(sin t + sin t)2. Expanding this expression and 
using the trigonometric identities sin2 A = (1 – cos 2A)/2 
and 2 sin A sin B = cos(A – B) – cos(A + B), we get

y = k[1 – (cos 2t + cos 2t)/2 – cos( + )t + cos( – )t].
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The constant term 1 inside the brackets merely shifts 
the equilibrium point of the vibrations and is of no inter-
est to acoustics, whereas the terms cos 2t and cos 2t 
correspond to octaves of the original tones and could thus 
be interpreted as overtones. But the terms cos( + )t and 
cos( – )t are new tones: the first, a summation tone, has 
a much higher frequency than either of the original tones, 
while the second, the difference tone that Sorge and Tar-
tini had discovered, has a much lower frequency. Helm-
holtz’s explanation made it clear that these tones, far 
from being ghost tones, are a physical reality.

Even the very existence of overtones was not yet univer-
sally accepted in Helmholtz’s time. To demonstrate their 
presence beyond a shred of doubt, he used a series of reso-
nators, small hollow glass spheres of various sizes, each ca-
pable of responding to just one frequency—one pure tone—
in the array of overtones comprising a musical sound. A 
series of these resonators thus acted as a primitive Fourier 
analyzer, an acoustic spectroscope of sorts. But Helmholtz 
did more: in 1863 he invented an electro- acoustic device 
that could combine several pure tones, each generated by 
a tuning fork driven by carefully timed electromagnetic 
pulses, to imitate the sound of various musical instruments 
and spoken vowels—a precursor of the modern electronic 
synthesizer. It is perhaps telling that Helmholtz’s “acoustic 
spectroscopy” happened at the very same time that Gustav 
Robert Kirchhoff and Robert Wilhelm Bunsen invented 
their optical spectroscope (the two were Helmholtz’s col-
leagues at the University of Heidel berg, where he was pro-
fessor of physiology from 1858 to 1871). These inventions 
were among the highlights of experimental science in the 
closing decades of classical physics.

But Helmholtz was just as much at home in theoret-
ical physics as he was in the laboratory, and here too 
his work covered several diverse fields, among them 
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thermodynamics, hydrodynamics, and electromagnetism. 
In 1847 he formulated his version of the law of conser-
vation of energy, one of the pillars of nineteenth- century 
physics. He then turned his attention to the Sun and in 
1854 proposed a theory that purported to explain the 
Sun’s vast energy output as being caused by gravitational 
contraction (we know today that this would fall far short 
of the Sun’s actual output, generated by nuclear fusion at 
its core). Yet it was not until 1871 that Helmholtz became 
“officially” a physicist, when he was appointed professor 
of physics at the University of Berlin, a position he held 
for the rest of his life.4

𝄓
On the Sensation of Tone is considered one of the clas-
sic scientific treatises of the nineteenth century. Com-
prising (in the English translation) 576 densely printed 
pages—229 of which make up twenty appendixes—the 
work contains a vast amount of detail covering acoustics, 
physiology and anatomy, music theory and music history, 
musical notation, and a fair amount of advanced math-
ematics. When I worked on my doctoral thesis in acous-
tics at the Technion—Israel Institute of Technology, I 
was determined to study this work from cover to cover, 
but I soon realized that this would be next to impossi-
ble. My biggest challenge was not the parts of the book 
dealing with music, nor its mathematical discussion, but 
the impossibly long, convoluted German prose that even 
in the English translation included paragraph- long sen-
tences embedded within sentences—and with the verb 
always coming at the end. Well, this was a thoroughly 
pedantic work, written in the best (or worst) tradition of 
nineteenth- century style. It was a big effort to wade my 
way through this wealth of information, but the rewards 
more than justified it.
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𝄓
The discoveries of Fourier and Helmholtz were among the 
crowning achievements of the golden age of acoustics. But 
we must again ask, did they have any impact on music as 
an art? Here is what Igor Stravinsky had to say on the sub-
ject: “Though I have worked all my life in sound, from an 
academic point of view I do not even know what sound is. I 
once tried to read Rayleigh’s Theory of Sound but was un-
able mathematically to follow its simplest explanations.”5 
John William Strutt, 3rd Baron Rayleigh (1842–1919), 
was one of England’s most distinguished physicists in the 
waning years of classical physics. In 1877 Lord Rayleigh 
published his The Theory of Sound, a two- volume work of 
over a thousand pages, the definitive treatise on acoustics 
up to that date.6 This enormous tome covered practically 
every aspect of the field, from the vibrations of strings, air 
columns, membranes, bells, and plates to the propagation 
of sound waves in air and water. It is not a popular work by 
any measure, making full use of the latest techniques in 
advanced mathematics. It was never intended, of course, 
to have a direct influence on music, and indeed it hasn’t.

NOTES

 1. Fourier’s theorem can be generalized to functions with arbitrary periods, 
not just 2. It can also be extended to nonperiodic functions, in which case 
the discrete spectrum of the Fourier series becomes a continuous spec-
trum. For a good exposition of the subject see Erwin Kreiszig, Advanced 
Engineering Mathematics, 4th ed. (New York: John Wiley, 1979), chap. 10.

 2. The section on Fourier’s life is abridged from Eli Maor, Trigonometric 
Delights (Princeton, N.J.: Princeton University Press, 1998), chap. 15.

 3. An abridged English translation was published by Dover in 1962.
 4. For a biography of Helmholtz, see Leo Koenigsberger, Hermann von Helm-

holtz, translated by Frances A. Welby (New York: Dover, 1965).
 5. Igor Stravinsky and Robert Craft, Memories and Commentaries (London: 

Faber & Faber, 2003).
 6. Published in the United States by Dover, 1945.



C H A P T E R  6 

Musical 
Temperament

PE RHAPS NO OTHE R SUBJECT  has occupied the attention 
of music theorists more than the question of how to di-
vide the octave into smaller, musically-satisfying steps. 
As we saw in chapter 2, Pythagoras’s attempt to achieve 
this goal suffered from several major flaws. Nevertheless, 
practicing musicians considered his scale to be reason-
ably adequate for musical performances as long as only 
a single voice or instrument was involved. The fact that 
his scale rested solely on the ratios 2:1, 3:2, and 4:3—that 
is, on the simple numerical sequence 4:3:2:1—greatly 
appealed to the numerically minded Pythagoreans and 
their medieval followers. Add to these the ratio 9:8, corre-
sponding to a second (a whole tone, obtained by dividing 
3:2 by 4:3), and all four intervals could be condensed into 
the sequence 12:9:8:6 (12:9 = 4:3, a fourth; 12:8 = 3:2, a 
fifth; 12:6 = 2:1, an octave; and 9:8, a second). All other 
intervals were considered dissonances, to be avoided or at 
least resolved into consonances.

But in the Middle Ages, musicians became aware of 
two new intervals that sounded just as pleasing as the 
previously- allowed consonances: a major third (such as 
from C to E) and a minor third (from C to E flat)—and 
they corresponded to the hitherto excluded ratios 5:4 and 
6:5. The new intervals, together with their inversions, a 
minor sixth (such as from C to A flat) and a major sixth 
(C to A), corresponding to the ratios 8:5 and 5:3, were soon 
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added to the list of consonances and were enthusiastically 
embraced by composers. But this required that the Py-
thagorean scale be restructured into something more in 
tune with the laws of acoustics. The result was the just- 
intonation scale, invented in 1558 by the Italian composer 
and music theorist Gioseffo Zarlino (1517–1590):

C

1

D

8
9

E

4
5

F

3
4

G

2
3

A

3
5

B

8
15

C

2.

l

We notice that the third note in this sequence, 5:4 = 
80:64, is a tad smaller than its Pythagorean counterpart, 
81:64. When we divide each member of the sequence by 
its predecessor, we get the intervals between the notes:

8
9

8
9

8
9

9
10

15
16

9
10

15
16 .

This sequence of intervals comprises the just- intonation 
major scale (there is also a corresponding minor scale, 
obtained by lowering the third and sixth notes—and in 
one variant, also the seventh—by half a note). We should 
bear in mind, however, that practicing musicians almost 
always refer to intervals by their musical names—an oc-
tave, a fifth, a whole tone, and so on—rather than by their 
frequency ratios. 

𝄓
The just- intonation scale had the advantage of being 
based on the first six members of the harmonic series, the 
progression of overtones produced by nearly all musical 
instruments (see figure 3.3, page 34). It thus conformed 
more closely to the laws of acoustics than the purely 
mathematical scale of Pythagoras. But it, too, suffered 
from a troublesome feature: it contained two slightly dif-
ferent intervals, 9:8 and 10:9, both called a second or a 
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whole tone. They differ by the small, but still audible, in-
terval (9:8):(10:9) = 81:80 = 1.0125, an impurity that an 
average listener could perhaps tolerate (the ear is capable 
of distinguishing intervals as small as 1.003). Suppose, 
however, that you attempted to transpose a melody from, 
say, C major to D major and play it on an instrument with 
fixed, predetermined notes such as the piano. Every note 
of the C major scale should then be moved up by the ratio 
9:8, resulting in the sequence

, , ,1 8
9

8
9

8
9

8
9

64
81

4
5

8
9

32
45

# # #= = =

and so on. We see that the second note now corresponds 
to 81:64, slightly higher than the original 5:4 (= 80:64), 
while the third note corresponds to 45:32, slightly lower 
than 3:2 (= 45:30): the sequence is getting out of tune with 
the keyboard notes.

Now on an instrument with a continuous range of notes, 
like the violin or trombone, this presents no problem, but 
on a keyboard or a wind instrument with fixed holes, 
transposition becomes impossible. To cope with this prob-
lem, harpsichords of the Baroque period were often built 
with up to three keyboards, each tuned to a different key. 
This of course made actual playing on them that much 
more difficult, and it allowed only transposition between 
the built- in keys. With music becoming ever more complex 
and steadily moving away from monophonic to polyphonic 
(several voices heard at once), this became a vexing issue. 
The answer was to be found in a new scale in which the 
octave is divided into twelve equal semitones, each hav-
ing the frequency ratio :2 112  to its predecessor. This ir-
rational number would have been received with horror 
by the Pythagoreans, as it cannot be written as a ratio of 
integers. Its decimal value, about 1.0595, is within 0.67 
percent of the just- intonation semitone, 16:15 ~ 1.0667, a 
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barely audible difference that most musicians were will-
ing to live with.

The history of the equal- tempered scale can be traced 
back to Aristoxenus of Tarentum (fl. 335 BCE), a pupil of 
Aristotle who wrote numerous books—by some accounts, 
more than two hundred—on mathematics and music the-
ory; sadly, only a handful of these survive in fragmentary 
form, among them Harmonics, considered the earliest 
Greek work on music theory. Aristoxenus rejected the 
Pythagorean philosophy of “number rules the universe,” 
especially when it came to music. Intervals, he insisted, 
should be judged by the ear alone, not by arithmetical 
relations. This led him to devise a continuous range of 
musical intervals, a drastic departure from Pythagoras’s 
discrete ratios.

Aristoxenus’s ideas lay dormant for two thousand 
years, until they were revived in the sixteenth century 
by Vincenzo Galilei. In his Dialogo della musica antica e 
della moderna (1581), Galilei suggested dividing the oc-
tave into twelve equal semitones, each having the ratio 
18:17 ~ 1.0588. This is within 0.7 percent of the just- 
intonation semitone, but it would make the octave slightly 
flat [(18/17)12 ~ 1.9856]. At about the same time Zhu Zaiyu 
(1536–1611), a Chinese prince of the Ming dynasty, wrote 
several treatises on music theory in which he proposed an 
equal temperament. So also did the Flemish mathema-
tician Simon Stevin (1548–1620), who insisted that the 
fifth should have the ratio ( ) .~2 1 498312 7  rather than 
the Pythagorean ratio 3:2 = 1.5. But it seems that Marin 
Mersenne, in his Harmonie Universelle of 1636, was 
the first to give us a full account of the equal- tempered 
scale, complete with detailed numerical calculations. He 
is said to have suggested the ratio ~ .1 05973 2

24
–  as 

the best approximation to the equal- tempered semitone 
~ .1 0592 512 , having also the dubious advantage that 
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it can be constructed with a straightedge and compass. 
Twelve of these semitones would make the octave equal 
to 2.0061, slightly higher than the exact octave.1

Equal temperament offered musicians an acceptable 
compromise between the dictates of musical harmony 
and the practicality of playing a piece on the keyboard 
(the word “temperament” alludes to the fact that the 
just- intonation scale is being tempered, or compromised). 
 Johann Sebastian Bach (1685–1750) is said to have writ-
ten his The Well- Tempered Clavier, comprising all twelve 
major and twelve minor keys of the chromatic scale, spe-
cifically in order to convince his fellow musicians of the 
advantages of the new system. By the mid- nineteenth 
century it became the standard tuning system of West-
ern music. Not everyone was happy, though. Helmholtz, 
for one, objected to it because it had a “deplorable effect 
on musical practice, especially in regard to singing.” Even 
today, some string players and vocalists, when perform-
ing among themselves, insist on tuning their instruments 
or voice to just intonation.2

At its core, the equal- tempered scale is a geometric pro-
gression of ratios:

, ( ) ( ), ., ( ) , ,1 2 2 2 2 212 12 12 12 211 12 f =

Because 212  is an irrational number, none of the ratios of 
the just- intonation scale are preserved except for the oc-
tave; for example, the fourth, being five semitones above 
the fundamental, corresponds to the ratio ( )212 5  or about 
1.3348, a tad above the perfect fourth 4:3 = 1.3333. As 
one commentator said, the equal- tempered scale makes 
“all intervals equally imperfect.” To measure such min-
ute differences, a metric pitch scale has been devised in 
which each semitone of the equal- tempered scale is equal 
to 100 cents, making a full octave equal to 1,200 cents. 
This is a logarithmic scale, akin to the decibel scale for 
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measuring loudness or the Richter scale used in seismol-
ogy. A frequency ratio b

a  is equal to 1,200 log2 b
a  cents, 

or about 3,986 log10 b
a  when using common (base 10) loga-

rithms. The semitones in the three aforementioned scales 
have the following cent values: 

Pythagorean semitone 256:243  =  90 cents
Just-intonation semitone 16:15  = 112 cents
Equal- tempered semitone :2 112  = 100 cents

The smallest interval a human ear can detect varies 
from one individual to another but can be as small as 5 
cents. Thus the differences between the three semitones 
are well within the human audibility limit.

𝄓
Among the many mathematicians who tried their hands 
at inventing a “perfect” musical scale, Isaac Newton de-
serves some mention—not so much for his actual contri-
bution to the subject—which is mainly of historical in-
terest today—but rather because he is, after all, Newton. 
Early in his adult life Newton was caught up with the 
prevailing interest in “harmonics,” the kind of musical 
numerology that Pythagoras had initiated two millennia 
before. As far as is known, Newton had no interest in 
music as an art; in the only opera he ever attended, he 
reportedly “heard the first Act with pleasure, the 2nd 
stretch’d his patience, at the 3rd he ran away.”3 His in-
terest in music was limited to a search for numerical 
patterns in the ratios of a scale; among his more pecu-
liar ideas was a “palindromic scale” based on the just- 
intonation intervals but in a different order and starting 
with the note D: 

 D E F G A B C Dl
 9:8 16:15 10:9 9:8 10:9 16:15 9:8
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This scale sounds rather awkward, but Newton was 
attracted to it because of its numerical symmetry. Later, 
in 1675, he likened the seven divisions of the octave to 
the seven rainbow colors of the optical spectrum, assign-
ing the colors red, orange, yellow, green, blue, indigo, and 
purple to his palindromic intervals.4 This, of course, was 
a flawed analogy: in reality the “seven” rainbow colors 
blend into each other in a continuous gradation, whereas 
the frequencies of a musical scale are by necessity dis-
crete. Apparently the allure to put visual and aural per-
ception on an equal basis appealed to a number of scien-
tists (as we recall, Galileo Galilei drew a similar analogy 
between the motion of two pendulums and the simultane-
ous sound of two consonant notes)—notwithstanding the 
fact that the two phenomena are completely different.

𝄓
Like the tuning systems that it has replaced, the equal- 
tempered scale was just that—a scale, a structure. It was 
up to the composer to create the music to fill that struc-
ture with notes, and up to the performer to transform 
those notes into actual sound. We should also remember 
that no single scale has an absolute claim for being the 
“correct” scale. Ultimately the choice of a scale is a sub-
jective matter. I may relate here my own experience as 
an amateur clarinet player: when my instructor assigned 
me a whole- tone passage to practice, the sequence at first 
sounded rather strange; however, after playing it perhaps 
fifty times, it became natural to me, and I found it no 
less agreeable than the good old diatonic scale. And so 
it was with the equal- tempered scale: after encountering 
an initial opposition by musicians, it had, by the mid- 
nineteenth century, become universally accepted as the 
standard tuning system of Western music. It was, per-
haps, the single greatest gift of mathematics to music.
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NOTES

 1. There is a vast body of literature on the history of tuning. See the ex-
tensive bibliography in the article “Temperaments” in The New Grove 
Dictionary of Music and Musicians, 2nd ed., vol. 25, pp. 264–269. See 
also the article on equal temperament at en .wikipedia .org /wiki /Equal 
_temperament.

 2. The issue, however, can still stir up a controversy. See, for example, Ross 
W. Duffin, How Equal Temperament Ruined Harmony (and Why You 
Should Care) (New York: W. W. Norton, 2008).

 3. Quoted without source in Penelope Gouk, “The Harmonic Roots of New-
tonian Science” in John Fauvel, Raymond Flood, Michael Shortland, and 
Robin Wilson, editors, Let Newton Be! A New Perspective on His Life and 
Works (New York: Oxford University Press, 1988), p. 101.

 4. Ibid., p. 118.

http://www.en.wikipedia.org/wiki/Equal_temperament
http://www.en.wikipedia.org/wiki/Equal_temperament
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Music for the  
Record Books
The Lowest, the Longest, the 
Oldest, and the Weirdest

IN MARCH 2013 ,  the astronomy magazine Sky and 
Telescope reported the discovery of the lowest known 
musical note in the universe. The source of this note 
is the galaxy cluster Abell 426, some 250 million 
light years away. The cluster is surrounded by hot 
gas at a temperature of about 25,000,000 degrees 
Celsius, and it shows concentric ripples spreading 
outward—acoustic waves. From the speed of sound 
at that temperature—about 1,155 km/sec—and the 
observed spacing between the ripples—some 36,000 
light years—it is easy to find the frequency of the 
sound: about 3  10–15 Hz, which corresponds to the 
note B- flat nearly 57 octaves below middle C. Says 
the report: “You’d need to add 635 keys to the left 
end of your piano keyboard to produce that note! 
Even a contrabassoon won’t go that low.”

American avant- garde composer John Cage wrote 
what would be his most famous—and most contro-
versial—work, 4l33m, in which a pianist comes on 
stage, opens the lid of the piano, sits down, and for 
the next four minutes and thirty-three seconds does 
exactly nothing. Long regarded as a musical cari-
cature, Cage actually wrote it so that the audience 
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would be forced to listen to silence or, more precisely, 
to the ambient background noise of passing traffic, 
tweeting birds, chirping crickets, or a cough from 
the crowd. Its premiere took place in an open barn 
in Woodstock, N.Y., on August 29, 1952, and caused 
an uproar among the listeners, raising the question 
of what exactly constitutes music. Cage regarded it 
as his most important work.

The front page of the New York Times of May 5, 
2006, reported on a group of musicians in the Ger-
man town of Halberstadt who were performing a ver-
sion of Cage’s composition called As Slow as Possible. 
The group is taking Cage’s call to the extreme: the 
work is an ongoing project planned to be unfolding 
for the next 639 years. Adding a note one day, delet-
ing another the next day, and inserting or removing 
pipes to the St. Burchardi Church organ on which 
the piece is being performed, the creators are in no 
hurry to complete the work in their lifetime. There 
are eight movements, each lasting about 71 years. 
Says the New York Times: “The organ’s bellows 
began their whoosh on September 5, 2001, on what 
would have been Cage’s 89th birthday. But nothing 
was heard because the musical arrangement begins 
with a rest—of 20 months. It was only on Febru-
ary 5, 2003, that the first chord, two G- sharps and a 
B in between, was struck.” In response to the article, 
one reader asked: “Will there be an intermission?” 
It will be interesting to read the reviews when the 
work finally comes to its conclusion in the year 2640.

The record for the largest orchestra ever employed 
in classical music probably goes to Hector Berlioz’s 
1837 Requiem; it calls for 108 string players, twenty 
woodwinds, twelve French horns, eight cornets, 
twelve trumpets, sixteen trombones, six tubas and 
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four ophicleides (a tubalike instrument, now obso-
lete), ten timpani players, two bass drums, four gongs, 
and ten pairs of cymbals, plus a choir of at least 200 
singers—enough sonic power to make  Beethoven’s 
Ninth Symphony sound like chamber music. It is all 
the more astonishing in light of the fact that Berlioz 
never learned to play the piano, and—except for two 
years at the Paris  Conservatory—was essentially 
self- taught.1

The Book of Genesis tells us that “Jubal [a seventh- 
generation descendant of Adam] was the father of all 
those who play the lyre and the pipe” (Genesis 4, 21). 
But the earliest actual musical instrument to have 
come to us was discovered in 2008 by archeologists 
excavating a cave near the city of Ulm in Germany; 
they unearthed a wing bone of a griffon vulture with 
five precisely drilled holes in it—a flute; it was dated 
to be about 35,000 years old. The relic is “of an early 
human society that drank beer, played flute and 
drums and danced around the campfire on winter 
evenings,” wrote Thomas H. Maugh II in an article 
in the Chicago Tribune.2 Archeologist John Shea is 
quoted in the article as saying, “Every single society 
we know of has music.” If we only had a musical re-
cord of what the owner of that flute played on it 35 
millennia ago!

Unlike artistic or literary records, musical preser-
vation goes back only to 1860. On April 9 of that year, 
Édouard- Léon Scott de Martinville made the first 
known recording of a musical piece, a woman sing-
ing the French folk song “Au Claire de la lune, mon 
ami Pierrot” scratched on a waxed sheet of paper. 
De Martinville thus predated Thomas Alva Edi-
son’s more famous recording of “Mary Had a Little 
Lamb” by seventeen years.3 In 2012, the Museum of 
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Innovation and Science in Schenectady, N.Y., played 
a reconstructed version of the original music that 
Edison had recorded with his phonograph on a sheet 
of tinfoil in 1878. As reported by the Chicago Tri-
bune, “The recording opens with a 23- second cornet 
solo of an unidentified song, followed by a man’s voice 
reciting ‘Mary Had a Little Lamb’ and ‘Old Mother 
Hubbard.’ ”4 Had the phonograph been invented just 
one hundred years earlier, perhaps we would have 
had a record of how Haydn or Mozart played on their 
keyboard instruments, and music history would have 
been immeasurably enriched. If only . . .

Now fast forward to 1982, the year that the Sony 
Corporation issued the world’s first compact disc. 
The company’s president and chairman, Norio Ohga, 
reportedly “pushed for a 12- centimeter format, pro-
viding enough storage to allow listeners to hear all of 
Beethoven’s Ninth Symphony without interruption,” 
according to Ohga’s obituary.5 Those specifications 
are still in use, perhaps marking the Ninth’s most 
endurable record—literally. Ohga’s decision was re-
portedly influenced by his training as a musician.

NOTES

 1. Goodall, The Story of Music, p. 154.
 2. Chicago Tribune, June 25, 2009.
 3. Goodall, pp. 237–238.
 4. Chicago Tribune, October 26, 2012.
 5. Chicago Tribune, April 25, 2011.
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Musical Gadgets
The Tuning Fork and the Metronome

IN TIMES OF OlD,  when a musician needed to tune his in-
strument, he relied entirely on his ears’ sense of pitch. But 
in 1711 John Shore, an English trumpeter and lute player, 
invented a device—a tuning fork—that could sound the 
exact pitch of a single note; that would be enough for a 
trained musician to tune each of the strings of his in-
strument to its correct pitch. As his reference pitch Shore 
chose the note A above middle C, whose frequency he set 
at 423.5 Hz. Shore’s tuning fork went through a series 
of improvements, notably around 1850, when German 
physicist Rudolph König set its frequency at A = 435 Hz 
with the intention of making this the international stan-
dard of pitch. However, as with many other international 
agreements, not everyone consented to abide by this 
convention, and animated debates as to what should be 
the “correct” or absolute pitch were quite common. The 
modern standard A = 440 Hz was adopted at a congress 
of physicists in Stuttgart, Germany, in 1834, but it was 
not until 1939 that this became the official international 
benchmark.

But even that was not the end of the pitch debate. Begin-
ning about 1970 it became fashionable to play orchestral 
music on period instruments, the term usually referring 
to the Baroque period (roughly 1600–1750). Advocates 
of this trend claim that period instruments sound more 
authentic and closer to what the composer had in mind 
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(the instruments themselves may be original, as with 
the famed Stradivarius, Guarneri, and Amati violins, or 
they may be reconstructed, as in the case of wind instru-
ments). To be truly authentic, however, these instruments 
must be tuned to the considerably lower pitches used in 
earlier times, specifically to the A = 435 Hz mentioned 
above, and to the even lower Baroque- era pitch (Handel’s 
tuning fork, dating to 1751, was set to A = 422.5 Hz, and 
Mozart’s 1780 fork to A = 421.6 Hz).1

A tuning fork produces nearly a pure sine tone; its vi-
brations are almost devoid of overtones. Once struck, it 
can vibrate for a very long time before its sound attenu-
ates to the threshold of audibility. As with the Slinky (see 
page 52), several acoustic principles can be demonstrated 
with a tuning fork or, better still, with two identical forks, 
each mounted on a sound box that acts as a resonator 
(figure 7.1). Place the two forks a few feet apart, strike 
one of them, and then stop the vibrations with a gentle 
touch. If you listen carefully, the other fork will respond 
by vibrating at the same frequency, seemingly all by it-
self (depending on the room conditions, it works even at 
a distance of some 30 feet). This is the phenomenon of 
resonance, the ability of one vibrating body to set another 
body into sympathetic vibrations, provided their natural 
frequencies are exactly the same. But if you change the 
frequency of one of the two forks ever so slightly (this can 
be done by attaching a small metal ring to one prong, 
which has the effect of lowering its frequency), there will 
be no resonance; the second fork will be immune to the 
the calls of its mate. 

If you strike the two forks—still set at slightly differ-
ent pitches—simultaneously, you will hear a throbbing 
tone whose frequency is nearly that of the two forks, but 
whose amplitude pulsates at a rate equal to their dif-
ference. This is the phenomenon of beats (see page 36, 
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note 8). Woodwind players, when playing in pairs, use it 
to fine- tune their instruments until no beats are heard—
the “zero beat” method.

The two prongs of a tuning fork always vibrate at a 
180- degree phase difference to each other, resulting in 
regions of mutual cancelation of the sound waves. You 
can actually hear this interference pattern by holding the 
fork at its stem next to your ear and rotating it; you will 
immediately hear the alternations of sound and silence. 
It is also interesting to note that, although the prongs 
vibrate transversally (sideways), they transmit their vi-
brations to the stem longitudinally and cause it to vibrate 
up and down. There is, however, one point close to the 
stem where the prongs do not vibrate at all. This point is 
the node; you can locate it by gradually sliding the metal 
ring down along the prong of one fork while the other vi-
brates at its natural frequency. The beats will slow down 
as the ring is moved ever closer to the node, until they 

FIGU RE 7.1 .  Two tuning forks, each mounted on a sound box.
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vanish when the node is reached; the added mass of the 
ring, when placed exactly at the node, has no effect on the 
fork’s natural frequency.

If you still happen to own an old- fashioned vinyl- record 
turntable in working condition, you can use it to demon-
strate one more familiar acoustic principle: the Doppler 
effect. Set your turntable at 33 or 45 rpm, place on it (off 
center) a tuning fork attached to its sound box, strike it, 
and turn the device on. You will clearly hear the pitch 
going up each time the fork approaches you and down as 
it recedes. Austrian physicist Christian Andreas Dop-
pler (1803–1853) postulated this effect in 1842 and cor-
rectly predicted that it should also apply to electromag-
netic waves.2 Doppler worked out the formula that relates 
the frequencies f and f l of the transmitted and received 
sound waves, f /v

f
c1l = + , where v is the speed of the moving 

source (taken positive when receding from the observer, 
negative when approaching) and c is the speed of sound. 
His formula was put to the test a few years later in a 
rather unusual way: the Dutch physicist Christoph Hein-
rich Dietrich Buys- Ballot (1817–1890), who was director 
of the Royal Meteorological Institute at Utrecht, Holland, 
placed a group of trumpeters on a railroad flatbed car 
that was pulled back and forth by a locomotive at vari-
ous speeds. On the ground he stationed a group of musi-
cians possessing the sense of perfect pitch, who were able 
to judge the pitch of the sound coming from the band as 
it approached them or moved away. Their findings con-
firmed Doppler’s formula.

You may have noticed that Doppler’s formula depends 
only on the ratio v/c of the source’s speed to the speed of 
sound, not the actual speeds. For example, when v/c = 1/2, 
f l = (2/3)f, so the stationary listener will hear the note C 
when the player actually played the note G above it, that 
is, a fifth below the player’s own pitch; when v/c = –1/2 
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we get f l = 2f, and the received pitch will be a full octave 
above the player’s pitch. An interesting case arises when 
v/c = –1 (the source approaching the listener at the speed 
of sound). This causes the denominator in the formula 
to become zero, and consequently f l becomes undefined. 
This, at least, is what a mathematician would conclude. 
But a physicist would have no qualms concluding that 
f l = ∞: the waves pile up on top of each other and create 
a shock wave, a sonic boom rather than a musical sound.3

Besides its intended role as a tuning device, the tuning 
fork has also found a medical application: physicians use 
it to test a patient’s neurological responses to external 
stimuli. But closer again to its original purpose, the tun-
ing fork became a bona fide musical instrument as the 
dulcitone, designed by Thomas Machell of Glasgow in the 
late nineteenth century. It was a pianolike keyboard in-
strument with tuning forks instead of strings (a similar 
instrument, the typophone, was invented in 1866 by Vic-
tor Mustel). The dulcitone had the advantage of not need-
ing frequent retuning, but the sound was much too feeble 
for a concert hall. Only a few examples of the instrument 
survive. The French composer Vincent d’Indy (1851–1931) 
gave it a role in his opera Song of the Bells.

𝄓
Whereas a tuning fork sets the standard of frequency, or 
1/time, the metronome marks time itself—or, more pre-
cisely, the rate of time. Invented in 1814 by Dietrich Niko-
laus Winkel, it is more often associated with the name of 
Johann Nepomuk Mälzel (1772–1838), an inventor of me-
chanical gadgets who started manufacturing it two years 
later after reportedly stealing the invention from Winkel. 
Basically a physical pendulum whose center of gravity 
can be regulated to tick at a preset rate (figure 7.4), the 
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metronome found an immediate admirer in none other 
than Beethoven, to whom Mälzel was befriended.4 As the 
story goes, in 1812 some of Beethoven’s close friends— 
including Mälzel—got together to celebrate the compos-
er’s trip to Linz and Mälzel’s trip to England to promote 
his latest mechanical inventions. Being in a rare jovial 
mood, Beethoven improvised a little musical ditty, com-
plete with metronome settings, in honor of his inventor- 
friend (figure 7.2).

This simple line, imitating the metronome ticks, would 
germinate in the composer’s mind and be incorporated in 
the second movement of his Eighth Symphony in F Major, 
op. 93.5 A decade later Beethoven went back to his earlier 
works and marked them with metronome tempos; per-
haps the most famous of his settings was 108 beats per 
minute (bpm) for the first movement, allegro con brio, of 
his Fifth Symphony in C minor, op. 67.

Like the tuning fork, the idea behind the metronome 
was to give musical tempi an objective, quantitative 
measure that would enable performers to play a work 
at the exact speed specified by the composer. This would 
prove a vain hope: just as with the disagreements over 
standard pitch, metronome settings became—and still 

FIGU RE 7. 2 . Beethoven’s song in honor of Mälzel.

Ta

lie ber- lie ber Mälzel

etc.

-

ta ta ta ta ta ta ta tata ta ta ta ta ta ta
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are—hotly contested by performers, who have their 
own opinions as to what the “correct” tempo should be. 
That famous ta ta ta taah motif that opens Beethoven’s 
Fifth—the “knock of fate” (figure 7.3)—has been played 
by conductors at speeds ranging from a glacial 40 bpm 
under Leopold Stokowski to Beethoven’s own specified 
108 bpm under Arturo Toscanini.6 (In a concert in New 
York to mark VE Day, May 8, 1945, Toscanini, who was 
famous for rigidly adhering to the composer’s instruc-
tions, exceeded even that speed and claimed the fastest 
Fifth ever recorded.)7 

Some composers dismissed the metronome altogether; 
among them was Johannes Brahms, who in 1880 wrote 
to a friend: “The metronome has no value . . . for I myself 
have never believed that my blood and a mechanical in-
strument go well together.” Indeed, the expression “met-
ronomic performance” has become synonymous with a 
dry, mechanical run through the written notes of a score, 
devoid of spirit and passion. Playing by the numbers, you 
might call it.

For some two hundred years, the metronome was a 
common sight at the home of nearly every composer or 
keyboard player, perched ceremoniously on top of their 
piano. But like most mechanical gadgets, the tuning fork 
and metronome have made the transition from  analog de-
vices to digital. For about twenty- five dollars you can now 
get them combined in a single hand- held device,  capable 
not only of generating any pitch and tapping any musical 
tempo electronically, but also of listening to an external 

FIGU RE 7. 3 .  Opening motif of Beethoven’s Symphony no. 5 in C minor, op. 67.
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tone and determining if it is flat, sharp, or just right. 
Within a decade of its appearance on the market, the new 
device has rendered its mechanical forebears obsolete, 
destined to go the way of the logarithmic slide rule and 
the mechanical typewriter and become collectors’ items.8

FIGU RE 7. 4 .  Mechanical metronome.
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NOTES

 1. See “The History of Musical Pitch in Tuning the Pianoforte” by Edward E. 
Swenson, at http:// drjazz .ca /musicians /pitchhistory .html, and “Standard 
Pitch or Concert Pitch for Pianos” at www .piano -  tuners .org /history /pitch 
.html (no author is named). According to another source, “The Tuning- 
Fork” (www .h2g2 .com /approved _entry /A87740373), Handel’s fork was 
pitched at C = 512 Hz, which would correspond to A = 426.7 Hz.

 2. His name often appears as Johann Christian Doppler, but this has been 
proven wrong. He should not be confused with Albert Franz Doppler 
(1821–1883), a Polish- born Austrian flute player and composer.

 3. I can’t resist relating here what a friend of mine once told me when we 
both were physics majors at Hebrew University of Jerusalem: “It is not 
true that you can’t divide by zero; you can—provided no one’s around to 
watch you.”

 4. The details on Beethoven’s attitude to the metronome are based on Mat-
thew Guerrieri’s book The First Four Notes: Beethoven’s Fifth and the 
Human Imagination (New York: Alfred A. Knopf, 2012), pp. 24–27.

 5. The story, however, is uncorroborated, and the attribution of the so- called 
“Joke Canon” to Beethoven has been questioned. Regardless, you can lis-
ten to it at www .youtube .com /watch ?v = GVHYtaKREAc.

 6. Guerrieri, p. 217.
 7. “Classical Notes: Ludwig van Beethoven Fifth Symphony,” at www 

.classicalnotes .net /classics /fifth .html.
 8. In fact, you don’t even need a physical tuning device; website or smartphone 

apps allow you to do it virtually. See, for example, www .onlinetuningfork 
.com/.

http://drjazz.ca/musicians/pitchhistory.html
http://www.piano-tuners.org/history/pitch.html
http://www.piano-tuners.org/history/pitch.html
http://www.h2g2.com/approved_entry/A87740373
http://www.youtube.com/watch?v=GVHYtaKREAc
http://www.classicalnotes.net/classics/fifth.html
http://www.classicalnotes.net/classics/fifth.html
http://www.onlinetuningfork.com/
http://www.onlinetuningfork.com/
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Rhythm, Meter, 
and Metric

THE STEADY, RE PETITIVE TICKS  of a metronome,

••••••••••••••••••••• . . .

lack any sense of rhythm; nobody in their right mind 
would find a musical appeal in such an array of ticks. But 
insert some time divisions—called bars or measures—
and everything changes:

|••|••|••|••|••|••|••|••|••|••| . . .

Now the ticks are organized in a temporal pattern, which 
we can interpret as two beats to the measure—a duple 
meter. I say “interpret,” because the notes themselves ha-
ven’t changed—they are exactly the same as the metro-
nome ticks; only our perception of them changed. Put the 
bar lines after every third note instead, and the pattern 
becomes a triple meter:

|•••|•••|•••|•••|•••|•••|•••| . . .

Again, placing the bar lines after every fourth note re-
sults in a quadruple meter:

|••••|••••|••••|••••|••••| . . .

Depending on the actual time value of the notes, we can 
assign to every meter a time signature, written at the be-
ginning of a piece of music right after the key signature. 
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For example, if each tick stands for a quarter note (♩), the 
three patterns shown above will have the time signatures 
2/4, 3/4, and 4/4, meaning that there are respectively two, 
three, or four beats per bar, each beat falling on a quarter 
note (♩). These “musical fractions” resemble our ordinary 
algebraic fractions, but they follow different rules; a 3/4 
meter, for example, is not the same as a 6/8 meter, the 
latter indicating six beats to the bar, each on an eighth 
note (♪).

A meter by itself is just a framework in time, a skeleton. 
It is rhythm that breathes life into this framework and 
transforms it into music. To quote composer, conductor, pi-
anist, and music lecturer Leonard Bernstein (1918–1990) 
in his book The Infinite Variety of Music:1 “The rhythmic 
pattern alone—even without the melodic notes, or the 
harmony, or orchestral color—just the rhythmic design 
can be expressive in itself.” Witness the pent- up tension 
in the steady, barely audible, timpani beats—all on the 
same low note C—that takes us from the somber scherzo 
of Beethoven’s Fifth Symphony to its triumphant finale: 

|•- -|•••|•- -|•••|•- -|•- -|•- -|•- - 

|•-•|•-•|•-•|•-•|•••|•••|•••|•••| . . .

You may notice that this rhythmic pattern imitates the 
opening notes of the symphony, the “knock of fate” theme 
(see figure 7.3, p. 88). This famous theme made it into the 
movie The Longest Day. As D- Day is about to unfold, the 
steady, muted taps

|•••|•- -|•••|•- -|

can be heard in the background as the huge invasion 
armada is getting the order to set sail for the beaches 
of Normandy; coincidentally, the taps •••- are also the 
Morse code for the letter V, Victory.
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𝄓
The duple, triple, and quadruple meters, and variations 
thereof such as 2/2 or 3/8, have been the three basic 
rhythmic patterns of Western music since about 1600. 
Other meters have occasionally been used by composers: 
Tchaikovsky chose a quintuple meter, 5/4, for the second 
movement of his Symphony no. 6 in B minor, op. 74, the 
Pathétique; this unusual meter makes the theme feel like 
a “limping waltz” (figure 8.1).

Now it doesn’t come to us naturally to count in fives, 
so we interpret this meter as 2/4 + 3/4; that is, we put the 
main accent on the first two notes of each measure, in effect 
dividing it into two submeasures of unequal length. Note 
that 2/4 + 3/4 is not the same as 3/4 + 2/4; that’s because 
musical fractions are embedded in time, and time inexo-
rably flows forward: “first” always comes before “second.”

In The Infinite Variety of Music, Bernstein makes the 
case that, until about 1900, most meters, regardless of 
their “numerators,” were actually duple meters in dis-
guise. This is because a motif rarely stands on its own; it 
is usually repeated, verbatim or in some variation, to form 
a kind of “superbar” with an overall duple meter. Figure 
8.2 shows the opening theme of Mozart’s Symphony no. 
40 in G minor, K. 550. Watch—or better still, hear—how 
the rhythmic pattern of the opening phrase in bars 1, 2, 
and 3 is repeated in bars 3, 4, and 5. 

FIGU RE 8 .1 .  Theme from the second movement of Tchaikovsky’s Symphony 
no. 6 in B minor, op. 74, the Pathétique.
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The predominance of the duple meter, according to 
Bernstein, derives from the fact that almost everything 
in our lives follows a 1–2 rhythm: our hearts beat in a 
two- stroke cycle, we walk in steps of 1–2, 1–2, our bodies 
are shaped in a left- right symmetry, we breathe in a cycle 
of inhale- exhale, and our daily routines are centered on 
the day/night cycle. So it is only natural that music should 
follow the same pattern; it ensures that a work maintains 
its overall balance and stability. 

𝄓
If there has ever been a composer whose music comes 
close to mathematical perfection, it is Johann Sebastian 
Bach. Of sublime beauty, rock steady rhythm, and spar-
ing use of external effects, his music became the ultimate 
model for generations of musicians. Figure 8.3 shows a 
page from Bach’s Sinfonia no. 15 in B minor, BWV 801 
in his own hand. There are just the notes; no dynamic 
instructions, no tempo alterations, no expressive verbal 
comments—just the notes: a pure, majestic geometric 
structure in time, a supreme manifestation of steadiness, 
stability, and musical balance. 

The rhythmic structure of a composition—its meter—
is to music what the metric is to geometric space: it de-
termines the fabric over which the work is woven. Until 
about 1900, a piece of music—a symphonic movement, 
for example—usually had a fixed, predetermined meter, 
indicated by its time signature at the beginning of the 
piece. A composer would sometimes change the meter in 

FIGU RE 8 . 2 . Opening theme of Mozart’s Symphony no. 40 in G minor, K. 550.
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the course of a movement, but as a rule it stayed the same 
over at least a large section, if not over the entire move-
ment. There were occasional exceptions: Modest Mus-
sorgsky’s Pictures at an Exhibition (originally written in 
1874 for the piano but better known in Ravel’s orches-
tral transcription) uses a variable meter that alternates 
between 5/4 and 6/4, forming a superbar with an 11/4 
meter that maintains the work’s overall sense of stability 
(figure 8.4).

But that was then. One early twentieth- century com-
poser was set not on maintaining stability but on de-
stroying it: Igor Stravinsky (1882–1971), Schoenberg’s 
archrival and antagonist, who did to rhythm what Schoen-
berg would soon do to pitch. In a single work, The Rite 
of Spring, Stravinsky threw by the wayside all existing 
rhythmic conventions, varying his meter from one bar to 

FIGU RE 8 . 3 .   Page from J. S. Bach’s Sinfonia no. 15 in B minor, BWV 801.
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the next, at one point changing it from the predominant 
6/8 to 7/8, then to 3/4, 6/8, 2/4, 6/8, 3/4, and 9/8 and throw-
ing the work into sudden, violent mood swings (see figure 
8.5). Says Bernstein: “In this great monument to rhythm, 
the Rite of Spring unleashed forces that have all but an-
nihilated the comfortable symmetries of yesteryear.”2 

During the Rite’s premiere at the Théâtre des Champs- 
Élysées in Paris on May 29, 1913, pandemonium erupted. 
The audience, not being accustomed to the abrupt rhyth-
mic changes and harsh dissonances, jeered, whistled, and 
hurled objects at the stage, until, according to one report, 
the police had to be called in. That, at any rate, is how 
Paris newspapers described the event, though the tumult 
may have been as much due to the outrageously provoca-
tive choreography of Vaslav Nijinsky as to the unsettling 
music.3 Through it all, the orchestra, led by Pierre Mon-
teux, kept its cool, going through the performance “appar-
ently impervious and as nerveless as a crocodile,” in the 
composer’s words.4 The event, being sarcastically called 
by one commentator The Massacre of Spring (a play on 
the work’s French title, Le Sacre du Printemps), eclipsed 
even the “scandalous” 1908 debut of Schoenberg’s Second 
String Quartet (see chapter 11); many regard it as the 
beginning of modern music.

FIGU RE 8 . 4 .  Theme from Mussorgsky’s Pictures at an Exhibition.



FIGU RE 8 . 5 .  Page from Stravinsky’s The Rite of Spring.
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In my mind, Stravinsky’s abrupt meter changes in the 
Rite bear a striking conceptual similarity to the variable 
metric of a warped, distorted surface. Up until about 
1850, space—whether two-  or three- dimensional—was 
assumed to be Euclidean, or “flat,” in the sense that the 
Pythagorean theorem takes the simple form we learned 
in school, albeit in differential form: ds2 = dx2 + dy2. In 
his 1851 doctoral dissertation, Georg Bernhard Riemann 
(1826–1866) introduced the notion that every point of a 
space has its own metric, represented by the expression 
ds2 = a(dx)2 + b(dxdy) + c(dy)2 in which a, b, and c are, 
in general, functions of x and y (note also the presence 
of the “mixed” term dxdy). That is to say, the properties 
of space are local rather than global, causing its fabric 
to change from one point to another, just as the musi-
cal fabric of the Rites varies from one bar to the next. 
Riemann’s idea was quite revolutionary for its time, but 
sixty years later Albert Einstein used it—now extended 
to four- dimensional spacetime—in formulating his gen-
eral theory of relativity.

NOTES

 1. New York: Simon and Schuster, 1962, p. 88.
 2. Ibid., p. 101.
 3. Goodall, The Story of Music, pp. 236–237.
 4. As quoted by John von Rhein in the article “Celebrating Stravinsky’s ‘Rite’ 

at 100,” Chicago Tribune, May 29, 2013.
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Frames of Reference: 
Where Am I?

THE YEAR 1637  marked a milestone in the history of 
mathematics. In that year René Descartes (1596–1650), 
a French soldier- turned- philosopher and mathemati-
cian, published his magnum opus, Discours de la Méth-
ode pour bien conduire sa raison et chercher la vérité dans 
les sciences (Discourse on the method of reasoning well 
and seeking truth in the sciences). In an appendix to the 
book, simply titled “La Geométrie,” he announced to the 
world an idea that would change the course of mathe-
matics: analytic geometry. His idea—according to leg-
end, it came to him while lying in bed late one morning 
and watching a fly move across the ceiling—was to as-
sign every point in the plane two numbers, its distances 
from two fixed lines—the point’s coordinates. His two 
lines were oblique rather than perpendicular, and they 
covered only positive numbers (i.e., the first quadrant 
in our modern rectangular coordinate system). Still, 
the use of coordinates allowed Descartes to translate a 
geometric problem into an algebraic equation, solve the 
equation, and then translate the solution back into ge-
ometry. This unification of geometry and algebra was a 
radical departure from classical, Euclidean geometry, 
and it fundamentally changed the way mathematicians 
think and work.

Of course, the use of a grid, or reference system, to lo-
cate a point was already well known long before Descartes. 
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As early as the second century CE, Greek geographer and 
astronomer Claudius Ptolemaeus, commonly known as 
Ptolemy, drew a map of the Old World, complete with a 
grid system of longitude and latitude lines (figure 9.1). 
This famous map has been reproduced numerous times 
and became the basis for nearly all maps of the Old World 
well into the fifteenth century.

But a reference system is more than just an aid in locat-
ing a point on the map: it provides us with a sense of be-
longing, of security. A change from one reference system 
to another often causes disorientation, as every first- time 
visitor to Washington, D.C., can attest to: the juxtaposi-
tion of the city’s rectangular and diagonal grids can be a 
challenge to navigate (figure 9.2). You drive down an ave-
nue, feeling smug in its straight, forward direction—your 
temporary reference system. Right or left turns cause no 
problem: we are so used to the rectangular coordinate 
system that we find it hard to think of any other means 
of orienting ourselves. But then, out of the blue, comes a 
six- way intersection where one crossroad heads off at 30 
degrees, throwing you into momentary disorientation—
especially at morning or evening rush hour traffic. The 
architects who planned this beautiful capital city may 
have had the French town of Versailles in mind, but they 
hadn’t thought of the confusion this double- grid system 
would cause to future travelers.

Reference systems play a role in art as well. Before the 
Renaissance, when a painter put his brush to the canvas, 
he drew on it not what his eyes saw but what his mind 
imagined. This was true especially when depicting a re-
ligious scene, the dominant theme of medieval art: the 
various figures—usually saints or Church officials—were 
shown according to their standing in the Church hierar-
chy, their relative size reflecting their rank.
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It was not until the fifteenth century that a more re-
alistic basis for painting was introduced: perspective. In-
vented in 1425 by Italian architect Filippo Brunelleschi 
(1377–1446) and further developed by Albrecht Dürer 
and Leonardo da Vinci, it gave the artist a fixed frame 
of reference to which every detail in the painting could 
be related. It incorporated two elements: the horizon (an 
imaginary line at infinity lying level with the artist’s 
eyes) and the “vanishing point” or “point at infinity” (the 
point where the artist’s line of sight meets the horizon). In 
this system, all lines parallel to one another in the actual 
scene converge at one vanishing point in the painting; a 
different set of parallel lines converges at another van-
ishing point (figure 9.3). And since all parallel lines seem 
to converge on the horizon, objects appear to get smaller 
the farther they are from the eye. We note in passing that 
the situation is entirely symmetric: when you see a person 
ten yards away, you see him or her at about half their 
actual height, but so does the other person, seeing you at 
half your height. Each observer has their own reference 
system; each is justified in claiming that theirs is the true 
system. Aha, hints of relativity!

The invention of perspective marked a radical depar-
ture from past practices. Numerous treatises were writ-
ten to explain it to artists (figure 9.4). It was considered 
as much a branch of geometry as of art, “a most subtle 
discovery in mathematical studies,” as Leonardo da Vinci 
is said to have remarked. From then on, objectivity be-
came the order of the day: artists were expected to paint 
the scene in front of them as their eyes actually saw it, 
using the canvas as a kind of photographic plate while 
strictly following the laws of perspective.

Of course, perspective was intended to be used here on 
Earth, where our daily activities are mostly confined to 



FIGU RE 9.1 .  Ptolemy’s world map and grid, reconstructed from his 
Geographia, ca. 150 CE.
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the level ground under our feet. The concepts “up” and 
“down” therefore have a clear meaning to each one of us. 
But because we live on a round planet, “up” and “down” 
are local concepts; they depend on where we happen to be 
on the globe (a recurring argument of Flat- Earth believ-
ers was that if the Earth were round, inhabitants “down 
under” would plunge into the abyss of infinite space, 
never to be seen again). In outer space, however, there 
is no one direction that we might call “up” or “down;” on 
the contrary, every directed line defines its own ground 
plane, the plane perpendicular to that line. The Dutch 
artist M. C. Escher (1898–1972) depicted this in two of 
his most intriguing prints, Relativity and Other Worlds 
(figures 9.5 and 9.6). 

FIGU RE 9. 2 .  Pierre Charles L’Enfant’s layout for Washington, D.C., as re-
vised by Andrew Ellicott, 1792.
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𝄓
Music, too, has its frames of reference: they are the vari-
ous keys, or tonalities, available to a composer. The sim-
plest key, having no flats or sharps, is C major:

 C MAJOR

Note designation: C D E F G A B Cl
Intervals between notes: 1 1 ½ 1 1 1 ½ 

FIGU RE 9. 3 .  Perspective.

v1 v2Horizon

FIGU RE 9. 4 .  Pietro Perugino, Entrega de las llaves a San Pedro (1481–82) at 
the Sistine Chapel in Rome.
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Here Cl denotes the note one octave above C, and the in-
tervals between successive notes are marked by 1 (a whole 
tone) and ½ (a half tone or semitone). The notes of C major 
correspond to the white keys on the piano, starting with C.

We must digress here for a moment and explain the dif-
ference between a key and a scale. A key is always named 
after its lowest, or base, tone (such as C in the example 
just given). A scale is the internal structure of intervals 
within the key. Any scale that consists of the sequence 
of whole and half tones 1 1 ½ 1 1 1 ½, regardless of the 
starting note, is called a diatonic major scale, or major 
scale, for short. For example, the key of D major is

FIGU RE 9. 5 .  M. C. Escher, Relativity (1953).
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D MAJOR

D  E  F♯  G  A  B  C♯  Dl
 1 1 ½ 1 1 1 ½

(the symbol ♯ stands for “sharp” to indicate that the note 
is raised by half a tone).

FIGU RE 9.6 .  M. C. Escher, Other Worlds (1947).
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If in a major scale we lower the third and sixth notes 
by half a note, it becomes a minor scale (“minor” because 
the second and fifth intervals are diminished). Here is 
the key of C minor:

C MINOR SCAlE

C  D  E♭  F  G  A♭  B  Cl
 1 ½ 1 1 ½ 1 ½

(the symbol ♭ stands for “flat” to indicate that the note is 
lowered by half a tone).1 These two types of scales—the 
major and minor diatonic scales—were used almost ex-
clusively in Western music from about 1600 to the begin-
ning of the twentieth century, and they are still the scales 
most classical music listeners feel comfortable with. We 
should mention, however, that there are other scales in 
use, such as a pentatonic scale:

PE NTATONIC SCAlE

C  D  F  G  A  Cl
1  1½  1  1  1½

found in much of Asian and African music (the version 
shown here, when moved up by a half tone to C♯ D♯ F♯ G♯ 
A♯, corresponds to the black keys on a piano), or a whole- 
tone scale, often used by Claude Debussy in the early 
twentieth century:

WHOlE- TONE SCAlE

C  D   E  F♯  G♯  A♯  Cl
 1 1 1 1 1 1.

To these we must add the chromatic scale, comprising 
all twelve semitones of the octave:

CHROMATIC SCAlE

 C C♯ D D♯ E F F♯ G G♯ A A♯ B Cl
 ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½ ½
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𝄓
We now touch upon an ongoing debate among music the-
orists. In principle, all keys with the same sequence of 
intervals—the same scale—are equivalent to one another 
and should sound the same to the ear. It makes no dif-
ference if you hum Twinkle Twinkle Little Star in, say, C 
major or in F- sharp major; the melody will sound exactly 
the same. This is because most people are sensitive only 
to relative pitch—to the interval between two notes—but 
not to their actual, absolute pitch. 

But you may have noticed the qualifier “in principle” at 
the beginning of the preceding paragraph, and I added it 
for a number of reasons. First, the quality of sound of mu-
sical instruments is not uniform over their entire range, 
but varies significantly depending on which register, or 
group of notes, is being played. The clarinet, for exam-
ple, has a rich, mellow, lower register, while higher notes 
sound distinctly shrill. Second, those few among us who 
are blessed (some would say cursed) with absolute pitch 
can easily detect if a note is out of tune by as little as 
one- sixteenth of a tone; consequently, they may feel that 
something is wrong if a piece is played in a key other than 
its designated key. And last, the ear itself responds dif-
ferently to different frequency ranges: it is the least sen-
sitive at both the lower threshold of audibility (about 20 
Hz) and the upper threshold, about 20,000 Hz for young 
people and half as much for older folks. All these factors 
introduce subtle parameters into the equation and often 
play a role in the composer’s choice of a specific key.

𝄓
With the beginning of the Romantic period in music 
around 1800, keys began to be associated with various 
emotional attributes. Qualities such as “bright,” “heroic,” 
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or “tragic” were being liberally used by music critics to 
characterize different keys, as if the mere designation of 
a key by name endowed it with emotional powers. This 
trend was undoubtedly a result of the tremendous emo-
tional impact that Beethoven’s nine symphonies had on 
nineteenth- century audiences. Each one of these works 
was already considerably longer than a Haydn or Mozart 
symphony, employed a larger orchestra, and had a unique 
character that made it stand apart from the others. This 
left an indelible mark on listeners, who soon began to 
associate each symphony with the key in which it was 
written.

It has been said that Beethoven’s symphonies can 
be divided into two groups: the odd- numbered sympho-
nies have a heroic, dramatic character, while the even- 
numbered are more lighthearted. His Third Symphony, 
the Eroica, first performed to the public in Vienna in 
1805 and dedicated to Napoleon (reportedly Beethoven 
later tore up the dedication when learning of the dictato-
rial powers the emperor had assumed), is regarded as the 
first major work of the Romantic era of classical music. 
With its bold, daring opening movement, followed by a 
somber funeral march and a vigorous scherzo in which 
three horns display dramatic dissonances and abrupt 
rhythmic changes, the Eroica and its key of E- flat major 
became the icon of heroism on a grand scale. As if wish-
ing to contrast this heroism with a more relaxed work, 
Beethoven’s fourth symphony is a cheerful composition 
in the key of B- flat major, so this key would become as-
sociated with liveliness and gaiety. When in 1841 Robert 
Schumann (1810–1856) composed his First Symphony, 
the Spring, he wrote it, to quote one music critic, in the 
“bright key of B- flat major,” as if the key itself—a mere 
musical frame of reference—had assumed a sensual 
quality of its own.
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Perhaps the most bizarre association of specific keys 
with emotional attributes was Hector Berlioz’s list of the 
twelve major and twelve minor chromatic keys, each as-
sociated with a specific mood; for example, D- sharp major 
was “dull,” whereas E- flat major was “majestic, tolera-
bly sonorous, soft, grave” (never mind that in the equal- 
tempered system, already in widespread use in Berlioz’s 
time, D- sharp and E- flat are enharmonic notes: they 
sound exactly the same, differing only in name and no-
tation). American composer Amy Beach (1867–1944) went 
even further: she associated different keys with visual 
colors; her musical palette included white for C major, 
black for F- sharp minor, yellow for E major, red for G 
major, and pink for E- flat major.2

There is, of course, nothing intrinsic about these keys 
that makes them “majestic,” “dull,” or “bright.” Franz 
Schubert’s (1797–1828) Fourth Symphony, the Tragic, is 
so named only because the composer reportedly modeled 
it after Beethoven’s Fifth, the “knock of fate” symphony, 
using the same key of C minor; it is a lovely, vivacious 
work, and one would be hard- pressed to find anything 
“tragic” about it (if any of Schubert’s symphonies comes 
close to being tragic, it is his Eighth, the Unfinished, in 
B minor). Should any of these works be played in another 
key—that is, in a different pitch—it is highly unlikely 
that the audience, except perhaps for a few diehard con-
noisseurs, would notice any difference.

But apparently the myth of the “correct” pitch refuses 
to die. In his book The First Four Notes: Beethoven’s Fifth 
and the Human Imagination, Matthew Guerrieri tells 
the story of Anton Schindler, who was Beethoven’s close 
friend during the composer’s last three years and who 
wrote his first biography. One day Schindler attended 
a performance of the Fifth Symphony but got so upset 
by the hall’s damp walls affecting the orchestra’s pitch 
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setting that he left the concert, exclaiming, “I don’t care 
to hear Beethoven’s C minor symphony played in the key 
of B minor.”3

At the risk of overstating the point, I may compare 
the situation to the choice of an appropriate coordinate 
system so as to simplify the equation of a curve. For ex-
ample, a circle with center at (h, k) and radius 1 has the 
rectangular equation (x – h)2 + (y – k)2 = 1. But move 
the origin to the point (h, k), and the equation in this 
new coordinate system simplifies to x2 + y2 = 1 (it simpli-
fies even further in polar coordinates: r = 1). The circle 
itself, together with its many geometric properties, has 
not changed; only its equation did. It is no different with 
transposition in music—writing the notes for a specific 
instrument in C major rather than in the natural key 
of that instrument. The modern orchestral trumpet, for 
example, is tuned to B- flat, but the notes that the player 
follows when playing this key are written in C major, 
avoiding the two “flat” signs in the key signature of B- flat 
major. This, of course, does not change the music, it only 
makes it easier to read. In fact, most players of transpos-
ing instruments such as the clarinet, French horn, and 
trumpet think of the written key as if it were the one ac-
tually heard, even though in the case of B- flat the music 
sounds a full tone lower than written.

𝄓
As we saw in chapter 7, during the Baroque period and 
well into the nineteenth century, instruments were tuned 
to a considerably lower pitch than the modern A = 440 
Hz—sometimes as low as 415 Hz. This has become an 
issue with the current trend of playing orchestral works 
on period instruments, which supposedly are more faith-
ful to the way music was heard during the composer’s 
time. But this also requires the performers to tune their 
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instruments to those lower pitches, for otherwise the 
work would be heard in a key different from the one the 
composer had designated. Says the Harvard Dictionary of 
Music in its entry “Absolute pitch”:

All the discussions about the “true pitch” of Beetho-
ven’s C- minor symphony, for example, are entirely 
pointless unless the standard pitch of Beethoven’s 
day is taken into account. . . . From a standpoint of 
absolute pitch, all present- day performances of music 
written prior to the general acceptance of the modern 
concert pitch [A = 440 Hz] are “wrong.” If a musician 
with absolute pitch who lived one hundred years ago 
were alive today, he would be horrified to hear Beetho-
ven’s Fifth Symphony played in what would be to him 
C- sharp minor.4

This brings us back to what we said earlier in this 
chapter: a key is no more than a musical frame of refer-
ence; it cannot by itself create music, nor (with the ca-
veats I mentioned above) can it lend the music a specific 
emotional character other than in the composer’s mind. 
In his book How Music Works: The Science and Psychol-
ogy of Beautiful Sounds, from Beethoven to the Beatles 
and Beyond, John Powell goes even further: when dis-
cussing Mozart’s Piano Concerto no. 17 in G Major, K. 453, 
he argues that the G major in the work’s title “is a to-
tally pointless piece of information . . . . I don’t know why 
every one involved in classical music broadcasting keeps 
telling us what key things were written in—it makes no 
difference to any of us.”5

𝄓
What makes a composer choose a particular key when con-
ceiving a new work has always been a mystery to me. In 
some cases the answer is readily available. The violin’s four 
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strings are tuned to the notes G, D, A, and E, all of which 
have “sharp” signs in their key signatures. Obviously any 
of these keys would be a natural choice for a major vio-
lin work; indeed, most of the great violin concertos of the 
nineteenth and early twentieth century were written in 
these keys: Beethoven’s, Brahms’s and Tchaikovsky’s in 
D major, Mendelssohn’s in E minor, Sibelius’s in D minor, 
Dvorak’s and Glazunev’s in A minor. Likewise, Mozart’s 
beautiful clarinet works were written in the natural keys 
of the instrument’s two main variants, A major and B- flat 
major. But what about his twenty- seven piano concertos? 
The piano is not as “key sensitive” to color as most other 
instruments: its tone quality changes but little over the 
seven octaves of a grand piano. It seems that different 
keys may form different mental images in a composer’s 
mind, giving B- flat major, for example, its “bright” image 
compared to the “darker” A minor. But these are mere 
speculations, and Mozart, despite his many surviving let-
ters, did not give us much insight into the deeper recesses 
of his creative mind.

At any rate, by the end of the nineteenth century, the 
firm hold that classical music has had over its key- based 
structure, or tonality, was beginning to slacken. The 
works of Wagner and Mahler strayed ever farther from 
being centered around a specific key, putting into ques-
tion the very reason for the existence of tonality. Some 
composers, sensing that tonality had run its course, were 
determined to forge ahead with a new approach. Fore-
most among them was Arnold Schoenberg.

NOTES

 1. A minor scale comes in several variants. The one referred to above (page 
108) is the harmonic minor scale. If the seventh note is also lowered, it 
becomes a natural minor scale. There is also a melodic minor scale, in 
which only the third note is lowered when the scale is ascending, but the 
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third, sixth, and seventh notes (counting up from the tonic) are lowered 
when descending.

 2. Louis C. Elson, Mistakes and Disputed Points in Music and Music Teaching 
(Philadelphia: Theo. Presser Co., 1910), pp. 13–16. 

 3. New York: Alfred A. Knopf, 2012, p. 49.
 4. By Willi Apel, 2nd edition (Cambridge, Mass.: Harvard University Press, 

1972), p. 2.
 5. New York: Little, Brown and Company, 2010, p. 217.
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Musical 
Hierarchies

FOR THRE E HUNDRE D YEARS ,  from about 1600 to the 
beginning of the twentieth century, a composition 
would follow a well- established structure: it usually 
opened in its designated home key, the tonic, the 
center of gravity of the piece. As the work evolved, 
the music would stray into other, related keys, a pro-
cess known as modulation. This change from one 
musical frame of reference to another was intended 
to surprise the listeners, to throw them out of their 
comfort zone within the home key, even momentarily 
disorient them by venturing into unexpected terri-
tory. It is like being aboard an aircraft: as long as 
the plane flies straight and level, you don’t experi-
ence any sense of motion; but if the aircraft abruptly 
changes its speed or direction of motion, you feel a 
sudden jolt. We are more sensitive to a change in our 
state of being than to the state itself.

The passage from the tonic to other keys was not 
arbitrary, but followed certain time- honored rules. 
After a work’s main theme made its entrance, the 
tonic usually changed to its dominant—the key built 
on the fifth note above the tonic (for example, C major 
would change to G major). More modulations might 
follow, carrying the work ever farther from the tonic. 
Invariably, however, the piece would return to its 
home key and bring the movement to its conclusion. 
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This principle of tonality, or key- based music, was 
the rock foundation on which classical music rested 
up until about 1900.

In addition, within each key there ruled a clear 
hierarchy in which every note had a specific musi-
cal relation to the tonic. These relations do not eas-
ily lend themselves to verbal description, but every 
musician is keenly aware of them. For example, the 
transition from tonic to dominant typically carried 
with it a sense of heightened tension, an expecta-
tion of things to come. In many of the great concer-
tos of the eighteenth and nineteenth centuries, the 
note announcing the beginning of the cadenza—the 
high point of the work, during which the orchestra 
is silent and the soloist is allowed to showcase his or 
her skills at improvisation—is the dominant note, as 
shown in the excerpt from Brahms’s Violin Concerto 
in D Major, op. 77 (seen in figure D.1).

The cadenza would often end on the leading note—
the seventh note of the diatonic scale, positioned just 
below the tonic—to announce that the full orches-
tra is about to return (see again figure D.1). Simi-
larly, the slow movements of many classical works 
are written in the subdominant key—the key be-
ginning with the fifth note below the tonic—as if 
to signal a relaxation from the high tension of the 
first movement. Like the class- oriented order that 
ruled Europe through much of its history, in which 
everyone knew their place in the social hierarchy of 
their community, so did the various notes of a work 
faithfully occupy their musical hierarchy within the 
work’s key.

Why these key relations play such an important 
role in classical music is the subject of an ongoing 
debate among music theorists, neuroscientists, and 



FIGU RE D.1 .  Brahms’s Violin Concerto, first movement: the orchestral note just 
 before the cadenza is A, the dominant of D.
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psychologists: is it just a mindset, the result of hun-
dreds of years during which music had been shaped 
and brought up to its present form, or is there some 
intrinsic physical or physiological factor at work, 
making some intervals more important than others? 
A definitive answer to this question is still wanting.
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Relativistic Music

AT FIRST SIGHT,  the two men could hardly be less alike: 
Arnold Schoenberg, short framed, his hair balding at the 
crown, his eyes conveying a nervous tension and excite-
ment; Albert Einstein, four years younger, his big frame 
and unkept mane making him an imposing figure, his 
gaze penetrating yet serene and seeming to go past you 
into the infinite realms of space and time. In character, 
too, they were worlds apart: Schoenberg, always conscious 
of his self- perceived place in history, often spoke of him-
self in third person and was easily offended and brutally 
blunt in criticizing his detractors; Einstein, with an ele-
phant skin that made him as indifferent to the heaps of 
criticism leveled against him as to the numerous honors 
bestowed on him, supremely confident of the correctness 
of his ideas but modest enough not to overplay his larger- 
than- life stature.

Yet despite these contrasts, their lives were remark-
ably similar. They were born within four years of each 
other, Arnold Schoenberg (1874–1951) in Vienna and Al-
bert Einstein (1879–1955) in Ulm, Germany, to middle- 
class Jewish families who raised them in the German- 
Austrian cultural tradition. Their mothers, both named 
Pauline, were accomplished piano players, so the two 
youngsters were exposed to music at an early age.1 Both 
showed an early interest in religion, but Einstein would 
later reject organized religion, while Schoenberg—still 
using the German umlaut in his name—converted to 
Christianity when he was twenty- four. Late in life, deeply 
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affected by the rise of anti- Semitism and the Holocaust 
that followed, they returned to their Jewish origins, Ein-
stein by identifying unequivocally with his Jewish breth-
ren and becoming an enthusiastic supporter of Zionism, 
Schoenberg by renouncing his adopted Christianity and 
reaffirming his Jewish faith in several of his most com-
pelling works.

Following the Nazi rise to power in 1933 they emi-
grated to the United States within a year of each other, 
Schoenberg settling first in Boston and then in Los Ange-
les, while Einstein made his home in Princeton; neither 
would set foot on European soil again (although Schoen-
berg’s remains were interred in his native Vienna). Arriv-
ing in 1934, Schoenberg became an American citizen in 
1941 and immediately changed the spelling of his name 
to Schoenberg; Einstein, arriving a year earlier, kept his 
name but had to adjust to its American pronunciation (in 
German it is pronounced Einshtein). They passionately 
pursued their hobbies, Einstein playing his violin and rid-
ing his little sailboat, Schoenberg being an accomplished 
painter and avid tennis player. Both loved to tinker with 
gadgets: Schoenberg worked on the design of a musical 
typewriter; Einstein, with fellow physicist Leo Szilard, 
invented and patented a refrigerator. Following the Nazi 
dismissal of all Jewish professors from German universi-
ties, the two worked tirelessly to help the displaced aca-
demics find jobs in their countries of refuge. Late in life 
they were honored by the newly founded State of Israel, 
Einstein being invited to become its second president (an 
offer he turned down), Schoenberg being elected as the 
first honorary president of Israel’s top music institute, the 
Rubin Academy in Jerusalem (he accepted, but declining 
health prevented him from filling the position). They died 
within the same time span that had separated them at 
birth, in their seventy- sixth year.
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In a sense, their lives’ legacies were similar too. Both 
began their careers as low- level clerks, Schoenberg at a 
Vienna bank, Einstein at the Swiss Federal Patent Office 
in Bern. Schoenberg was almost entirely self- taught, hav-
ing never received a formal academic education; Einstein 
graduated from the University of Zurich but acquired 
all of the knowledge he would later need by studying the 
classic nineteenth- century physics treatises on his own. 
Both men were deeply steeped in the classical world of 
nineteenth- century Europe, whose pillars were Johannes 
Brahms, Gustav Mahler, and Richard Wagner in music, 
and Michael Faraday, James Clerk Maxwell, and Ludwig 
Boltzmann in physics. Yet in their work Schoenberg and 
Einstein departed sharply from their classical forebears; 
their ideas were revolutionary and controversial, and 
they triggered heated debates among scholars and the 
general public.

𝄓
Einstein began forming his ideas about general relativity 
soon after his groundbreaking 1905 paper on special rel-
ativity. His goal was to arrive at a new theory of gravita-
tion in which the curvature of spacetime—its departure 
from “flat” Euclidean space—would supplant the Newto-
nian concept of action at a distance. The effort took much 
longer than he had anticipated—ten years of the most in-
tense work in his entire life. He wrapped up his theory on 
November 25, 1915, and published it the following year.

At the core of general relativity is the principle of equiv-
alence, said to have occurred to Einstein while he tried 
to imagine a person falling from a tall building (and sur-
viving the fall to tell about it). That person, Einstein re-
alized, would not experience any gravity at all: he or she 
would be weightless. But suppose the same person were 
enclosed in an elevator suspended in outer space, far from 
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any gravitational influences. If the elevator were suddenly 
pulled up at the acceleration of free fall (9.81 m/sec2), the 
person inside would feel as if he or she were being pressed 
to the floor by the force of gravity; their weight would be 
the same as if they were standing on solid ground back 
on Earth. This “thought experiment,” Einstein’s favorite 
mode of argument, convinced him that there is no differ-
ence between acceleration and gravity. The elevator and 
the Earth are two different frames of reference, but the 
event each passenger is experiencing is one and the same.

Imagine now that a beam of light penetrates the elevator 
through a narrow slit in one wall. If the elevator were sta-
tionary with respect to the source of light, the beam would 
strike the opposite wall at exactly the same height as the 
slit. If, however, the elevator is accelerating upward, the 
beam would hit the opposite wall at a point slightly lower 
than the slit; moreover, its path across the elevator will 
appear to the person inside as slightly curving downward. 
The passenger, thinking that he or she is firmly standing 
on the Earth, would interpret this as if the beam of light 
was being bent from its straight- line path by the force of 
gravity. Therefore, Einstein concluded, gravity causes light 
to curve. And since light must always follow the shortest 
path between two points, that path, the “straight line” of 
Euclidean geometry, is in reality curved: gravity causes 
spacetime to depart from its Euclidean flatness. Thus, out 
of a purely hypothetical thought experiment, one of the 
most profound ideas of modern science emerged.

We have assumed that our imaginary elevator is float-
ing in empty space, far removed from any gravitational 
influences. But in reality space is never empty: it is full 
of interstellar dust, gases, planets, stars, and galaxies, 
each exerting its own gravitational pull on the elevator. 
The observer inside will interpret this as if the geometry of 
spacetime—its departure from Euclidean flatness—varies 
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from one point to another; it is a local property of space-
time. But this at once raises the question, to which frame 
of reference should the observer relate the laws of physics 
as he or she observes them? Einstein’s answer, in essence, 
was that observers all have their own, local reference sys-
tem, related only to their infinitesimally close neighboring 
system in spacetime through the local metric (see page 98).

Today, when TV images of astronauts floating weight-
lessly inside their spacecraft are a household feature, 
the principle of equivalence is no more a mystery. But in 
1907, when Einstein started thinking about the nature 
of gravity, this idea was far from obvious. Air travel was 
still in its infancy, and space flight was the stuff of science 
fiction. The highest speed a person could experience was 
a fast- moving passenger train (indeed, many of the early 
popular explanations of relativity used trains for the pur-
pose). So it took a while for the principle of equivalence to 
gain acceptance.2

𝄓
At the very same time as Albert Einstein was shaping his 
ideas about general relativity, Arnold Schoenberg began 
to think of a new system of composition that, he hoped, 
would supplant the time- honored key- based music. He 
began working on it in 1908 while composing his second 
string quartet, op. 105. This work was unusual in at least 
two respects: its final two movements called for a soprano 
voice, and its last movement lacked any key signature 
whatsoever—it was atonal. Schoenberg himself did not 
like the descriptive word “atonal,” which he felt might 
be misinterpreted as implying an absence of structure. 
Quite to the contrary, he always insisted that his music 
was very much structured; it just wasn’t a tonal struc-
ture. He preferred the word pantonal music, in which all 
tones play an equal role.
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It took Schoenberg another twelve years to finalize his 
new system. He inaugurated it in two works, Five Piano 
Pieces, op. 23, and Serenade, op. 24, both completed in 
1923. The new system followed strict, mathematical- like 
rules. He described it as a “method of composing with 
twelve tones which are related only with one another,” 
each selected from the twelve tones of the chromatic scale 
(see page 108). They could be arranged in any order what-
soever, but each note must appear exactly once before the 
sequence is completed. This sequence—the tone row or 
series—was the centerpiece of Schoenberg’s new system; 
he called it serial, or twelve- tone, music (it is also known 
as dodecaphonic music).

In a tone row, complete democracy rules: each one of 
the twelve tones plays exactly the same role as any other. 
Gone are the tonal hierarchies in which every note had a 
specific musical relation to the tonic. Henceforth, only the 
position of each note relative to its immediate predeces-
sor would matter; you might call it relativistic music. To 
quote the composer and conductor Pierre Boulez (1925–
2016), “With it [the twelve- tone system], music moved out 
of the world of Newton and into the world of Einstein.” 
Indeed, Schoenberg himself compared his music to Ein-
stein’s general theory of relativity, in which all systems of 
reference are equivalent to one another.3

In Schoenberg’s system, the tone row replaced the tra-
ditional theme, or melodic subject, that had ruled classi-
cal music for three hundred years. Once a specific tone 
row is introduced in a composition, its notes are allowed 
to change their position in the row according to strictly 
prescribed rules: they could be played backward (retro-
grade motion), inverted (played upside down), or played 
in retrograde inversion. In the strictest definition of the 
series, each note must also have the same time value—
the same duration—so as to avoid giving any one note 



126 CHAPTER 10

a greater weight than the others (although Schoenberg 
later relaxed this restriction). The entire series could also 
be transposed up or down by any number of steps, pro-
vided its internal structure remained intact. These rules 
applied not only to the melodic or “horizontal” line of the 
series, but also to its harmonic or “vertical” content. Spe-
cifically, Schoenberg excluded the use of consonant chords, 
since the very fact that they were consonances gave them 
a tonal quality. He made one concession, though, to these 
strict rules: he allowed individual notes to be moved up 
or down by any number of octaves, in effect retaining the 
octave as the only interval that still had an “absolute” 
status in his music.

The twelve notes of the chromatic scale, each appear-
ing exactly once in the row, gave a composer a staggering 
number of combinations to choose from:

1 × 2 × 3 × g × 12 = 479,001,600,

to be exact (not counting shifts by octaves). Each one of 
these choices could qualify as a tone row and be used as 
the subject of a new composition. As an example, figure 
10.1 shows the original series from Schoenberg’s Varia-
tions for Orchestra (1928), followed by its three mutations.

FIGU RE 10.1 .  The row series from Schoenberg’s Variations for Orchestra: 
(S) The original row, (R) in retrograde, (I) in inversion, and (RI) in retro-
grade inversion (from the article “Variations for Orchestra (Schoenberg),” 
on the internet at http:// en .wikipedia .org /wiki /Variations _for _Orchestra _ 
(Schoenberg) #cite _note -2).
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The row could then be developed in a variety of ways, 
but always subject to the rules mentioned above. In that 
sense, serial music was not totally different from the tonal 
music it was meant to replace. What did make it different 
was the complete absence of tonality: no note was bound 
to any home key whatsoever. The one interval that still re-
tained a privileged status was the octave; within it, com-
plete equality reigned. One can hardly fail to notice the 
similarity of Schoenberg’s system to general relativity.

𝄓
Einstein submitted his general theory of relativity to the 
journal Annalen der Physik on March 20, 1916; Schoen-
berg completed his first two serial works in 1923. Yet the 
two visionaries could not entirely shake off their classical, 
nineteenth- century roots, and late in life both returned to 
those roots. Einstein stubbornly opposed the new prob-
abilistic interpretation of quantum mechanics, standing 
to his last day by his conviction that nature, even at the 
subatomic level, is deterministic. “God does not play dice,” 
was perhaps his most famous maxim. Schoenberg par-
tially returned to composing tonal music. “There is still 
much good music to be written in C major,” he said late in 
life. As if to prove him right, his archrival and antagonist 
Igor Stravinsky, in 1938–1940, wrote his Symphony in C 
(although its title didn’t say if it was C major or C minor). 
Tonal music was not quite dead after all.

Was Schoenberg’s music influenced by Einstein’s theory 
of relativity? There is no hard evidence to suggest such a 
connection, and yet one wonders. Relativity has had a pro-
found influence not only on the physics community, but on 
the general public as well. People with scarcely a knowl-
edge of science began to use relativity as implying that ev-
erything in life is relative. Indeed, a new word was coined, 
relativism, and it was applied to just about everything, 



128 CHAPTER 10

from Salvador Dali’s surrealistic painting The Per-
sistence of Memory (1931), in which a distorted clock is 
depicted in a kind of time warp, to political, moral, and 
social agendas of every kind. Social relativism quickly 
became the favorite motto of academics, especially in the 
humanities and social sciences. So it is not inconceivable 

FIGU RE 10. 2 .  Einstein and Schoenberg at Carnegie Hall, New York, 1934. 
Also present (at left) is the Polish-American pianist and composer Leopold 
Godowsky.
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that some of this found its way, consciously or not, into 
Schoenberg’s music.

Einstein and Schoenberg briefly met twice in 1934, first 
when the composer gave a lecture in Princeton and again 
when Einstein was the guest of honor at New York’s Car-
negie Hall in a fundraising event to help Jewish children 
settle in Palestine. Einstein, whose favorite composers 
were Bach, Mozart, and Schubert, thought that Schoen-
berg and his music were “crazy.”4 There is a photograph of 
the two, posing for the camera at the Carnegie Hall event 
(figure 10.2); unfortunately, not much is known about 
what was said between them.

NOTES

 1. According to some sources, Schoenberg’s mother was a piano teacher, 
while others claim that both his parents were not particularly interested 
in music. I’ve been unable to resolve this issue.

 2. The four preceding paragraphs are taken, with slight adaptation, from Eli 
Maor, The Pythagorean Theorem: A 4,000–Year History (Princeton, N.J.: 
Princeton University Press, 2007), p. 193.

 3. Interestingly, just as Schoenberg didn’t like to refer to his work as “atonal,” 
so did Einstein object to the word “relativity,” perhaps fearing that it 
would be perceived by the public as meaning that “everything is relative” 
(which indeed is what happened); he preferred to call it the theory of in-
variants. Nevertheless, the words “relativity” and “atonality” stuck and 
soon became part of twentieth- century jargon. Einstein himself would 
use the word in his subsequent papers.

 4. Quoted in Denis Brian, Einstein: A Life (New York: John Wiley, 1996), 
p. 257.
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Aftermath

THE IMME DIATE AFTE RMATH  of Einstein’s theory of rela-
tivity and Schoenberg’s twelve- tone music was a mix of 
adulation and scorn. Einstein, achieving overnight world 
fame after the results of the 1919 solar eclipse were an-
nounced, was hailed as a second Newton, in fact as the 
scientist who proved Newton wrong. The fact that a bi-
zarre theory by a German- born scientist had been con-
firmed by a British- led expedition—this coming on the 
heels of World War I—only added to Einstein’s aura as a 
saintly man whose sheer intellect could perhaps restore 
peace to war- ravaged Europe. The few physicists who 
could understand his theory, given its highly advanced 
mathematics, hailed it as the most elegant work in theo-
retical physics ever created. For the majority of scientists, 
however, relativity was counterintuitive, remote from the 
kind of physics that could be demonstrated in the labora-
tory and utterly irrelevant to their own work.

But the strongest reaction to relativity came not from 
academic circles but from the public at large. Einstein’s 
strange predictions, combined with his saintly, larger- 
than- life image, made him the subject of unbridled wor-
ship. Numerous popular accounts of relativity sprang like 
mushrooms after a heavy shower, voraciously devoured 
by people who had scarcely any knowledge of science. 
Before long the throngs began to part ranks, pitting 
“relativists” against “antirelativists.” The latter group 
included scientists who, frustrated at not being able to 
comprehend the intricate mathematics in which relativity 
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was formulated, turned their frustration into open hostil-
ity. One physicist, attending a public lecture on relativity 
by Einstein, stormed out of the hall, declaring that it was 
all one big nonsense.

The antirelativists were not limiting their campaign 
to academic arguments alone; they branded relativity as 
a “Jewish science,” tainted by Talmudic- style arguments 
on trivial minutiae. Philipp Lenard, a physicist who won 
the Nobel Prize for his study of cathode rays and whom 
Einstein had once admired, turned against him by join-
ing a “Study Group of German Natural Philosophers,” 
a nationalistic organization whose goal was to purge 
German science of all traces of “foreign” influence. In a 
public event in Berlin’s Philharmonic Hall on June 24, 
1920, relativity was attacked on grounds that it was too 
abstract, too removed from experimental physics, too 
Jewish and un- German. Einstein, as always serene and 
staying above the fray, stood his ground. When asked a 
year earlier what would happen if the British eclipse ex-
pedition would prove him wrong, he had replied, “I would 
feel sorry for the Lord. The theory is correct.”

In Vienna, Schoenberg’s atonal music was received 
with equally mixed reactions. While it was appreciated 
by some of his colleagues, the public was mostly indif-
ferent, sometimes even hostile. In the 1908 debut of his 
second string quartet, with its atonal last movement, a 
near riot broke out when the audience interrupted the 
performance with catcalls; reporters described the music 
and its composer as “insane.” Said Schoenberg, “They 
[the protests] were a natural reaction of a conservatively 
educated audience to a new kind of music.” The public 
simply could not get used to music lacking a central key, a 
tonality. Three decades later the Nazis put all of Schoen-
berg’s music on the list of “degenerate art,” unbefitting to 
be heard by the German people.
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𝄓
From this point on, the stories of Schoenberg’s serial 
music and Einstein’s general relativity unfolded in op-
posite directions. By the mid- 1920s interest in relativ-
ity began to wane. Einstein has never attracted a major 
school of followers who would carry on his ideas. Partly 
out of reverence to the great sage, partly because teach-
ing was never Einstein’s forte, young physicists did not 
flock around him. And in any case, the hot topic of the 
1920s was not relativity but nuclear physics and quan-
tum mechanics, and it was to these fields that the best 
of the new generation of physicists gravitated. The hand-
ful of scientists who did work on relativity were mainly 
mathematicians who assisted Einstein in his attempt to 
formulate a unified field theory, a quest that would oc-
cupy him to his last day.

Things thus stood until about 1960. Thanks largely 
to theoretical physicist John Archibald Wheeler (1911–
2008), interest in general relativity started to pick up 
again. A major factor in this revival was a plethora of 
groundbreaking discoveries in astrophysics—exotic ob-
jects such as quasars, pulsars, and, the holy grail of them 
all, the hypothetical black hole, whose behaviors could be 
explained only with the help of relativistic physics. Also, 
advances in new technologies, from infrared and radio 
telescopes to particle colliders and orbiting observatories, 
have finally put general relativity in the realm of exper-
imental science, where its premises could be tested. And 
indeed, nearly all of the theory’s predictions have since 
been confirmed, from the bizarre behavior of binary neu-
tron stars in close orbit to the gravitational microlens-
ing of a remote star or galaxy as its light is bent by an 
intervening body when the two are aligned with Earth. 
And as I’m writing this, general relativity has scored 
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perhaps its greatest triumph yet: the detection of grav-
itational waves, almost exactly one hundred years after 
Einstein had predicted them. From an esoteric, highly 
abstract subject when it was created, general relativity 
has transformed into one of the most active branches of 
astrophysics.1

𝄓
“If the period from 1830 to 1860 was the early Romantic 
period, if the latter half of the century was the age of 
Wagner, if the period from 1910 to 1945 was the age of 
Stravinsky, then the decades from 1950 were the period 
of Schoenberg and his school; and the final returns are 
not yet in” said the New York Times music critic Har-
old C. Schonberg (no relation to Schoenberg, despite 
their nearly identical names).2 Schoenberg’s teaching at-
tracted a cadre of devout followers—notably Alban Berg 
and Anton Webern, and later Milton Babbitt,  Olivier 
Messiaen, John Cage, and Pierre Boulez—who used the 
twelve- tone system in their own works and developed 
it further. Among members of this circle, Schoenberg’s 
music was the trend to follow; you were branded as con-
servative and hopelessly outdated if you still composed 
in the tonal style. 

But the public outside this narrow circle of composers 
remained largely cool to serial music; after 1970 or so, 
interest in it began to wane even among the profession-
als. Volumes of commentary and analysis of Schoenberg’s 
works did little to change the public’s negative reception 
of it, causing one commentator to remark that “Schoen-
berg’s music is more read about than heard.” Even Pierre 
Boulez, after launching the conducting phase of his ca-
reer for which he is mainly remembered today, became a 
skeptic. “The fascination of the more codified works of the 
twelve- tone era has faded,” he is quoted as saying.3
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𝄓
In the late 1980s I attended a concert by the Israel Phil-
harmonic in which a Schoenberg work was on the pro-
gram. Before the orchestra began to play, maestro Zubin 
Mehta turned to the audience and said a few words about 
the work: “I know that Schoenberg’s music is not easy to 
listen to, but I promise you, when you leave the concert 
hall tonight you’ll all be humming the tone series of the 
piece.” As far as I can recall, no one did.

In the course of writing this book, I read two biographies 
of Schoenberg; more important, I listened to several of his 
serial works—not an easy task for someone raised on the 
music of Bach, Mozart, and Brahms. Now please don’t get 
me wrong: I’m pretty much- open minded to post- classical 
music: I love the French impressionists Debussy and Ravel 
and their followers, Darius Milhaud and Francis Poulenc; I 
can even warm up to Paul Hindemith, and Igor Stravinsky 
is always exciting to listen to. But Schoenberg is a different 
story. You really have to force yourself to connect to his 
music. I’ve always been enchanted by wind instruments, so 
I bought a CD of Schoenberg’s only work scored solely for 
winds, his thirty- nine- minute- long quintet for flute, oboe, 
clarinet, bassoon, and horn, op. 26, composed in 1923–24.4 
I listened to it several times, but I can’t honestly say that 
I warmed up to it. There are a few momentary passages 
that are tolerably agreeable, especially when displaying 
the color contrasts of the five instruments. But I was hard- 
pressed to find an anchor, a rhythmic or melodic pattern 
that I could hold on to and say, “Aha, I recognize that pas-
sage.” The music sounds entirely local in time, with frag-
ments of melodic phrases coming and going, seemingly 
never to return. And that, of course, was the whole point of 
serialism: everything is local, every note is related only to 
the one preceding it; in short, relativistic music.
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𝄓
It has been said that the best criterion for assessing the 
importance of a scientific discovery is the number of prior 
papers that have been made irrelevant by it. In music, of 
course, the criteria are more subjective, but one that per-
haps comes closest to an objective measure is the number 
of listeners (judged, for example, by how many albums or 
CDs were sold, or the number of online visitors) willing to 
listen to a particular work. I don’t have access to the sales 
figures of major CD labels, nor to the number of Schoen-
berg performances by major orchestras, so I did the next 
best thing: I visited our local bookstore, with its huge se-
lection of classical, jazz, pop, and rock music, listed by 
genre and in alphabetical order of the composer’s name. 
I went straight to the letter S, but couldn’t find a sin-
gle Schoenberg CD. Not giving up, I asked the person in 
charge of the music section if the store had anything by 
Schoenberg. Yes indeed, they had a single CD that paired 
Schoenberg’s violin concerto with that of Sibelius. That’s 
half a CD for a composer who took upon himself, almost 
single- handedly, to rid classical music of the foundations 
on which it has rested for nearly half a millennium. 
Judged by this admittedly nonscientific survey, I think it 
is fair to say that Schoenberg’s music has failed to meet 
its creator’s high expectations.

Of course, tastes change with time, and a Schoenberg 
revival may yet happen one day, comparable to the revival 
of interest in relativity in the 1960s. There are historic 
precedents: for more than half a century following his 
death in 1750, Johann Sebastian Bach’s music was consid-
ered too academic, too rigid, too difficult to listen to, per-
haps even too mathematical. When Haydn said of Bach, 
“He is the father; we are the children,” he was referring 
to . . . Carl Philipp Emanuel Bach, Johann Sebastian’s 
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second surviving son.5 It was only Felix Mendelssohn’s fa-
mous 1829 performance of the St. Matthew Passion that 
finally enthroned the great master to the lofty pedestal 
on which he has rested ever since. Only time will tell if 
Schoenberg’s music will one day enjoy a similar revival.

𝄓
Schoenberg’s twelve- tone system is the climax of a twenty- 
five hundred- year quest to subjugate music to mathe-
matical rules—and this time it came from an insider, a 
composer. Ultimately, though, music has its own ways of 
endearing itself to our ears and minds. And this, I dare to 
say, requires a frame of reference, a tonal system to which 
we can relate the music. The need to have a reference 
system to guide us in whatever we do in life—walking 
across the room, driving down a road, looking at a paint-
ing, or listening to a Beethoven symphony—seems to be 
deeply seated in our collective consciousness. True, astro-
nauts have learned to live in outer space, where there’s 
no north and south, no up and down; but how many of us 
are fortunate enough to have spent a few hours or days in 
space? The fact is, we are all earthbound creatures, born 
with a natural frame of reference in which gravity defines 
our personal “down.” It is perhaps no accident that gravity 
and grave come from the same word. This holds also true 
in music: without a tonal frame of reference, a central key 
to gravitate toward, we feel lost, wandering aimlessly in 
an ocean of sound.

Ultimately, music is meant to move our souls, to stir 
our emotions, to arouse us to swing by its rhythms, and 
this cannot be achieved by mathematical principles alone. 
To quote astronomer and space scientist Jim Bell, “Music 
can capture human emotions to a degree beyond any-
thing that we can convey with equations.”6 Perhaps it can 
best be summed up by the poignant story of American 
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composer George Rochberg (1918–2005). Having begun 
his career as a serialist, he was at loss to express his grief 
upon the death of his teenage son in 1964. Twelve- tone 
music, with all its mathematical logic, just couldn’t con-
sole him: “Serial harmony rests on verbal and/or numer-
ical logic rather than aural perception,” Rochberg said.7 
He left serialism and found solace in returning to tonal 
composition; his fellow serialists harshly criticized him 
for this act of transgression.

NOTES

 1. On the growth of relativity since 1960, see Pedro G. Ferreira, The Perfect 
Theory: A Century of Geniuses and the Battle over General Relativity (Bos-
ton: Houghton Mifflin, 2014), and Marcia Bartusiak, Black Hole: How an 
Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by 
Hawking Became Loved (New Haven, Conn.: Yale University Press, 2015).

 2. The Lives of the Great Composers (New York: W.W. Norton, 1997), p. 594.
 3. Allen Shawn, Arnold Schoenberg’s Journey, p. 295.
 4. Issued by Berlin Classics, 1990 and 1997. The title uses the original spell-

ing of the composer’s name, Schönberg. The CD also has a divertimento 
for winds by Hanns Eisler.

 5. Crofton and Fraser, A Dictionary of Musical Quotations, p. 11. The authors 
quote from Christopher Headington, The Bodley Head History of Western 
Music (London: Bodley Head, 1974).

 6. The Interstellar Age: Inside the Forty- Year Voyager Mission (New York: 
Dutton, 2015), p. 78.

 7. Shawn, p. 292.
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The Bernoulli

lIKE EVE RY AUTHOR ,  I routinely get letters and 
emails from my readers, some more interesting, oth-
ers less so. But one email I received in 2013 immedi-
ately caught my attention. The writer was referring 
to a sidebar in my book e: The Story of a Number 
telling of an imaginary meeting between Johann 
Bernoulli and Johann Sebastian Bach, at which 
the two discuss the merits of the newly introduced 
equal- tempered scale. To make it easier to visualize 
this novel tuning system, Bernoulli proposes to rep-
resent the twelve semitones of the equally divided 
octave on a logarithmic spiral. Each note, having 
the frequency ratio :2 112  to its predecessor, is rep-
resented by a point on the spiral; twelve successive 
points, separated by 30- degree intervals, will in-
crease the distance from the spiral’s center by a fac-
tor of 2:1, that is, by an octave (figure E.1).

The email came from Michael Sterling, an indus-
trial mathematician by training and a prolific inno-
vator of many talents. A resident of the small town 
of Southampton, on the shore of Lake Huron in the 
Province of Ontario, Canada, he made himself a 
name by leading a four- year- long restoration of an 
Imperial Tower Lighthouse on Chantry Island off 
Southampton’s coast. He also served as an archae-
ological site engineer on recovering the remnants of 
the HMS General Hunter, a British frigate and vet-
eran of the famous Battle of Lake Erie in 1813. The 
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ship foundered on the shores of Southampton in 1816 
in a violent storm and disappeared beneath the sand.

The Hunter’s remnants were discovered in 2001. 
Based on data gathered from the excavation, Ster-
ling and his team constructed a realistic model 
of the ship, built to a 2/3 scale and complete with 
masts, sails, and three full- scale replica cannons; 
it is the prize exhibit at the town’s elegant Bruce 
County Museum.

Those are just some of Mike Sterling’s numerous 
inventions and restoration projects; but his email 
talked about something quite different: a large cir-
cular string instrument whose twelve strings are 
stretched radially from the center of a logarithmic 
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spiral with the growth rate of 2:1 per rotation; that 
is to say, after properly adjusting their tension, the 
strings are tuned exactly to the equal- tempered 
scale. Beneath the large circular base there is a 
parabolic acoustic mirror with a transducer at the 
focal point, amplifying the strings’ otherwise feeble 
sound. Mike appended his email with an image of 
his instrument; it was this image that caught my eye 
(figure E.2). Mike named his instrument Bernoulli 
in honor of Jakob Bernoulli, who discovered many of 
the spiral’s remarkable properties.

There followed a lively correspondence between us, 
and my wife and I decided to visit Mike in Southamp-
ton, a four- hour drive north from the city of Detroit. 
We were received with much honor, and our visit was 
covered by the local online daily, the Saugeen Times. 
But dominating our discussions was the Bernoulli. 
Its construction calls for four players to be stationed 
at the 3- , 6- , 9- , and 12- o’clock positions around the 

FIGU RE E . 2 .  Michael Sterling demonstrating his Bernoulli.
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instrument, each player being in charge of three 
strings activated with a small hammer. Mike is now 
looking for a composer to write a piece for the Ber-
noulli’s public debut. Meanwhile he has already built 
a second string instrument, a harplike structure 
consisting of thirty- six strings whose endpoints lie 
on the spiral’s involute (see figure E.3).1 Mike’s love 
for geometric shapes is apparent in all his designs, 
and especially in his two string instruments. I have 
no doubt that the music to be played on them will be 
as beautiful as their visual shape. Stay tuned!2

NOTES

 1. The involute of a curve is the locus of the free end of a taut, flexible 
string as it is unwound tangentially from the curve.

 2. You can hear a sample of the Bernoulli Involute  sound at this 
link, www .saugeentimes .com /120 %20x /Bernoulli %20Involute %20 
Sounds /Meandering %20Mike .mp3.

FIGU RE E . 3 .  Mike’s newest musical creation: the Bernoulli Involute.

http://www.saugeentimes.com/120%20x/Bernoulli%20Involute%20Sounds/Meandering%20Mike.mp3
http://www.saugeentimes.com/120%20x/Bernoulli%20Involute%20Sounds/Meandering%20Mike.mp3


C H A P T E R  1 2

The Last 
Pythagoreans

IN A STR ANGE WAY,  Pythagoras’s fixation with musical ra-
tios was resurrected—kind of—in the twentieth century, 
with the discovery that planetary orbits do in fact exhibit 
certain celestial harmonies or, more precisely, orbital 
resonances. For example, Neptune and Pluto (though the 
latter is no longer considered a planet) are locked in a 3:2 
resonance, meaning that Neptune completes three orbits 
around the Sun in the same time that Pluto completes 
two. Resonances also occur among the satellites of plane-
tary systems: Jupiter’s moons Io and Europa are locked in 
a 2:1 resonance, while Saturn’s Titan and Hyperion have 
a 4:3 resonance. Add to these our own Moon, whose rota-
tion period is the same as its synodic (new moon to new 
moon) orbital period around Earth, locking them in a 1:1 
synchronous rotation. Aha! 1:1, 3:2, 4:3, and 2:1 are none 
other than the musical intervals of unison, fifth, fourth, 
and octave—the Pythagorean perfect consonances. Poor 
Kepler, who spent half his professional life in a vain at-
tempt to derive the laws of planetary orbits from those of 
musical harmony, may have been right after all!

But orbital resonances are not confined only to the 
major planets and their satellites. Back in 1866, Ameri-
can astronomer Daniel Kirkwood (1814–1895) discovered 
several gaps in the vast asteroid belt residing between 
the orbits of Mars and Jupiter. To his surprise, Kirkwood 
found that these gaps correspond to orbital resonances 
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of 4:1, 7:2, 3:1, 5:2, 7:3, and 2:1 with respect to Jupiter’s 
orbit. On the other hand, asteroid concentrations occur at 
1:1, 3:2, and 4:3 ratios; these concentrations are known 
as the Trojan, Hilda, and Thule asteroid groups, respec-
tively.1 The reasons for these regions of concentration and 
paucity are not yet fully understood, but clearly Jupiter’s 
mighty gravitational pull has something to do with it. 
The simple numerical ratios that characterize orbital res-
onances mean that an asteroid will be in near alignment 
with Jupiter and the Sun at regular time intervals and 
will experience a minuscule gravitational kick at each 
such recurrence; over millions of years, these repeated 
nudges can build up and cause an asteroid’s orbit to either 
stabilize or become chaotic. Simulations on supercomput-
ers have shown that given enough time, these gravita-
tional perturbations will result in certain orbital regions 
being swept clear of matter, while others will cause mat-
ter to congregate there.

𝄓
In the 1980s a new branch of cosmology was making the 
news—string theory. According to the theory, everything 
in the universe was the result of vibrations of a multitude 
of strings, all inaudible to our ears because they existed 
in eleven dimensions. The mathematical beauty of string 
theory attracted to it many young cosmologists who were 
eager to be part of what promised to offer the key to our 
understanding of the universe.

The allure of string theory can be traced back to Al-
bert Einstein. When his general theory of relativity was 
published in 1916, its mathematical elegance and sweep-
ing predictions left a powerful impression on the handful 
of physicists who could master it. The fact that a pure 
creation of the mind, done with only paper and pencil 
and using highly abstract mathematics, could totally 
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revolutionize our understanding of space, time, and grav-
ity has led to the idea that “it is more important to have 
beauty in one’s equations than to have them fit exper-
iment,” as British physicist Paul Adrien Maurice Dirac 
(1902–1984) famously said.

Einstein spent the last thirty years of his life search-
ing for an all- embracing theory—the unified field—that 
would encompass not only gravitation but also electro-
magnetism and the strong and weak forces: the four fun-
damental forces that hold together our universe. Like 
Kepler three centuries before him, Einstein had a deep 
conviction that the laws of nature are simple at their 
core, governed by mathematical rules that are up to us 
to discover. The difference, of course, was that Kepler 
had spent—some would say wasted—the first half of his 
professional life chasing a chimera—his belief that the 
source of all physical laws is to be found in the laws of 
musical harmony—whereas Einstein did the same after 
he had already shaken the foundations of physics to their 
core. Supremely confident in the correctness of his path 
and ignoring the pleas of his younger colleagues to join 
them in building up quantum theory, he stuck to his pro-
gram until his very last day. 

Although Einstein failed in his quest, its legacy is 
lingering on to this day. Many aspiring young scien-
tists—mathematicians, physicists, and cosmologists—
have spent the best years of their careers in building 
up string theory, deep down believing that the universe 
is following mathematical rules that, if not exactly sim-
ple, should account for all the laws of nature. But after 
peaking around the turn of the century, enthusiasm 
for string theory has waned, mainly because the the-
ory’s highly abstract mathematical structure could not 
be verified by observation, as the scientific method ulti-
mately requires. 
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Ironically, Pythagoras, in his studies of vibrating 
strings, came closer to the scientific method than his mod-
ern followers. His philosophical musings notwithstand-
ing, Pythagoras at least experimented with real, physical 
strings, made observations, and drew conclusions from 
them—by and large correct conclusions. This cannot be 
said of his modern counterparts, whose quest is an ex-
ploration into the ethereal spheres of multidimensional 
worlds, as far removed from the observable universe as 
were the Pythagorean musings on the harmony of the 
spheres. To be sure, string theory has opened up new and 
exciting areas of research in pure mathematics, and it 
may yet achieve the Holy Grail of physics—a unification 
of quantum theory and relativity. But whether it will ful-
fill the high expectations of its practitioners and give us a 
satisfactory theory of everything remains to be seen. 

NOTE

 1. David Darling, The Universal Book of Astronomy: From the Andromeda 
Galaxy to the Zone of Avoidance (Hoboken N.J.: John Wiley, 2004), p. 275. 
For more on celestial resonances, see Ivars Peterson, Newton’s Clock: Chaos 
in the Solar System (New York: W.H. Freeman, 1993), chaps. 8 and 11.
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